1.回归算法(Regression)
a.一般最小二乘回归(Ordinary Least Squares)
b.逻辑回归(Logistic Regression)
c.自适应样条回归(Multivariate Adaptive Regression Splines,MARS)
d.局部估计散点图平滑回归(Locally Estimated Scatterplot Smoothing,LOESS)
2.基于相似性的模型(Instance-based Algorithms)
a.K近邻模型(K-Nearest Neighbour[KNN])
b.学习向量量化(Learning Vector Quantization[LVQ])
c.自组织映射(Self-Organizing Map[SOM])
3.特征选择算法(Feature Selection Algorithms)
a.过滤法(filter)
b.绕射法(wrapper)
c.内嵌法(embedded)
4.收缩方法(Regularization Methods)
a.岭回归(K-Nearest Neighbour,KNN)
b.LASSO回归(Least Absolute Sprinkage and Selection Operator)
c.弹性网络(Elastic Net)
5.树模型
a.分类和回归树(Classification and Regression Tree,CART)
b.ID3(Iterative Dichotomiser
R语言笔记之数据科学算法总结
最新推荐文章于 2024-09-29 09:29:47 发布
这篇博客详细总结了R语言中数据科学的各种算法,包括回归算法如最小二乘回归和逻辑回归,实例基础的K近邻模型,特征选择的过滤、绕射和内嵌法,收缩方法如岭回归和LASSO,以及树模型、贝叶斯模型、核函数算法、聚类算法、关联法则、人工神经网络和深度学习等。此外,还涵盖了降维算法和集成算法的应用。
摘要由CSDN通过智能技术生成