491.递增子序列
https://leetcode.cn/problems/non-decreasing-subsequences/
本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
void backtracking(vector<int> nums, int startIndex){
if(path.size() > 1){
res.push_back(path);
}
unordered_set<int> uset;
for(int i = startIndex; i < nums.size(); i++){
if(!path.empty() && nums[i] < path.back() || (uset.find(nums[i]) != uset.end())){
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return res;
}
};
nordered_set uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
46.全排列
https://leetcode.cn/problems/permutations/
排列问题的不同:
- 每层都是从0开始搜索而不是startIndex
- 需要used数组记录path里都放了哪些元素了
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
void backtracking(vector<int> nums, vector<bool> used){
if(path.size() == nums.size()){
res.push_back(path);
return ;
}
for(int i = 0; i < nums.size(); i++){
if(used[i] == true) continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return res;
}
};
47.全排列 II
https://leetcode.cn/problems/permutations-ii/
这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。
去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
void backtracking(vector<int> nums, vector<bool> used){
if(path.size() == nums.size()){
res.push_back(path);
return ;
}
for(int i = 0; i < nums.size(); i++){
if(i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) continue;
if(used[i] == true) continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> permuteUnique(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return res;
}
};