Day29 491.递增子序列 46.全排列 47.全排列 II

491.递增子序列

https://leetcode.cn/problems/non-decreasing-subsequences/
本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int> nums, int startIndex){
        if(path.size() > 1){
            res.push_back(path);
        }
        unordered_set<int> uset;
        for(int i = startIndex; i < nums.size(); i++){
            if(!path.empty() && nums[i] < path.back() || (uset.find(nums[i]) != uset.end())){
                continue;
            }
            uset.insert(nums[i]);
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracking(nums, 0);
        return res;
    }
};

nordered_set uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

46.全排列

https://leetcode.cn/problems/permutations/
排列问题的不同:

  • 每层都是从0开始搜索而不是startIndex
  • 需要used数组记录path里都放了哪些元素了
class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int> nums, vector<bool> used){
        if(path.size() == nums.size()){
            res.push_back(path);
            return ;
        }
        for(int i = 0; i < nums.size(); i++){
            if(used[i] == true) continue;
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return res;
    }
};

47.全排列 II

https://leetcode.cn/problems/permutations-ii/
这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。
去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int> nums, vector<bool> used){
        if(path.size() == nums.size()){
            res.push_back(path);
            return ;
        }
        for(int i = 0; i < nums.size(); i++){
            if(i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) continue;
            if(used[i] == true) continue;
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值