等比数列

本文介绍了一个简单的C语言程序,用于计算等比数列的和。输入为整数n和小数q,程序利用循环和pow函数计算1+q+q^2+...+q^n的值,并将结果精确到小数点后三位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

已知q与n,求等比数列之和: 1+q+q2+q3+q4+…+qn


输入

输入数据含有不多于50对的数据,每对数据含有一个整数n(1≤n≤20),一个小数q(0<q<2)。

输出

对于每组数据n和q,计算其等比数列的和,精确到小数点后3位,每个计算结果应占单独一行。

样例输入

6 0.3 5 1.3

样例输出

1.428
12.756

提示

浮点数的数据类型用double





#include <stdio.h>  
#include <math.h>  
  
int main()  
{  
    int n,i;  
    double q,sum;  
    while(scanf("%d %lf",&n,&q)!=EOF)  
    {  
        sum=1;  
        for(i=1; i<=n; i++)  
        {  
            sum=sum+pow(q,i);  
        }  
        printf("%.3f\n",sum);  
    }  
    return 0;  
}  
<think>好的,用户的问题是关于等比数列的计算公式和数学运算。首先我需要确认用户的需求,他们可能想知道等比数列的基本概念、求和公式以及如何在Python中实现。根据用户提供的参考引用,他们提到了等差数列的Python实现,所以可能需要等比数列的类似示例。 首先,我需要回顾等比数列的定义:每一项与前一项的比值是常数,即公比。首项为$a_1$,公比为$q$,第n项为$a_n = a_1 \cdot q^{n-1}$。然后求和公式分为公比是否等于1的情况,当$q \neq 1$时,前n项和为$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}$;当$q=1$时,和为$S_n = a_1 \cdot n$。 接下来,用户可能需要一个Python的实现示例。参考用户提供的等差数列代码,我应该写一个类似的等比数列求和的函数。例如,给定首项、公比和项数,计算前n项的和。需要注意处理公比为1的情况,否则会出现除以零的错误。 然后,生成相关问题需要考虑用户可能的延伸疑问,比如等比数列的应用场景、性质,或者与其他数列的区别。比如,如何判断等比数列的收敛性,或者在实际生活中的应用如复利计算。此外,可能还需要解释公式的推导过程,或者如何处理大项数时的计算问题,比如数值溢出。 还要确保回答符合系统级指令,使用正确的中文,数学公式用$...$或$$...$$格式。例如,在解释公式时,行内公式用$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}$,独立公式则换行并用$$包围。 最后,检查是否有引用需要添加。用户提供的参考引用是关于等差数列的Python实例,但这里可能需要引用相关的数学资料或编程示例,但如果没有其他引用来源,可能只需按照用户给的示例引用[^1]即可,不过需要注意引用内容的相关性。在这个情况下,用户的引用是关于等差数列的,所以可能需要指出虽然参考的是等差数列的例子,但这里处理的是等比数列,因此引用可能不直接相关,但根据用户的要求,还是在适当的地方添加引用标识。 总结回答结构:先介绍等比数列的定义和公式,给出Python代码示例,然后列出相关问题。确保使用正确的LaTeX格式,代码块用python语法高亮,相关问题涵盖公式推导、应用场景、编程实现中的问题、收敛性判断以及比较等差数列等。</think>### 等比数列计算与公式 #### 1. 定义与基本公式 等比数列是指每一项与前一项的**比值**为常数$q$(公比)的数列。设首项为$a_1$,公比为$q$,则第$n$项为: $$a_n = a_1 \cdot q^{n-1}$$ 前$n$项和公式分两种情况: - 当$q \neq 1$时: $$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}$$ - 当$q = 1$时: $$S_n = a_1 \cdot n$$ #### 2. Python实现示例 ```python def geometric_series_sum(a1, q, n): if q == 1: return a1 * n else: return a1 * (1 - q**n) / (1 - q) # 示例:计算首项为2,公比为3,前5项的和 print(geometric_series_sum(2, 3, 5)) # 输出:242 ``` #### 3. 公式推导(以$q \neq 1$为例) 1. 写出前$n$项和: $$S_n = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1}$$ 2. 两边同乘$q$: $$q S_n = a_1 q + a_1 q^2 + \dots + a_1 q^{n}$$ 3. 两式相减得: $$S_n - q S_n = a_1 (1 - q^n)$$ 4. 整理后得到: $$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}$$ [^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值