Spring的注解配置和XML配置的比较(zhuan)

注释配置相对于 XML 配置具有很多的优势:

它可以充分利用 Java 的反射机制获取类结构信息,这些信息可以有效减少配置的工作。如使用 JPA 注释配置 ORM 映射时,我们就不需要指定 PO 的属性名、类型等信息,如果关系表字段和 PO 属性名、类型都一致,您甚至无需编写任务属性映射信息——因为这些信息都可以通过 Java 反射机制获取。
注释和 Java 代码位于一个文件中,而 XML 配置采用独立的配置文件,大多数配置信息在程序开发完成后都不会调整,如果配置信息和 Java 代码放在一起,有助于增强程序的内聚性。而采用独立的 XML 配置文件,程序员在编写一个功能时,往往需要在程序文件和配置文件中不停切换,这种思维上的不连贯会降低开发效率。
因此在很多情况下,注释配置比 XML 配置更受欢迎,注释配置有进一步流行的趋势。Spring 2.5 的一大增强就是引入了很多注释类,现在您已经可以使用注释配置完成大部分 XML 配置的功能。

注释配置和 XML 配置的适用场合
是否有了这些 IOC 注释,我们就可以完全摒除原来 XML 配置的方式呢?答案是否定的。有以下几点原因:
注释配置不一定在先天上优于 XML 配置。如果 Bean 的依赖关系是固定的,(如 Service 使用了哪几个 DAO 类),这种配置信息不会在部署时发生调整,那么注释配置优于 XML 配置;反之如果这种依赖关系会在部署时发生调整,XML 配置显然又优于注释配置,因为注释是对 Java 源代码的调整,您需要重新改写源代码并重新编译才可以实施调整。
如果 Bean 不是自己编写的类(如 JdbcTemplate、SessionFactoryBean 等),注释配置将无法实施,此时 XML 配置是唯一可用的方式。
注释配置往往是类级别的,而 XML 配置则可以表现得更加灵活。比如相比于 @Transaction 事务注释,使用 aop/tx 命名空间的事务配置更加灵活和简单。
所以在实现应用中,我们往往需要同时使用注释配置和 XML 配置,对于类级别且不会发生变动的配置可以优先考虑注释配置;而对于那些第三方类以及容易发生调整的配置则应优先考虑使用 XML 配置。Spring 会在具体实施 Bean 创建和 Bean 注入之前将这两种配置方式的元信息融合在一起。
小结
Spring 在 2.1 以后对注释配置提供了强力的支持,注释配置功能成为 Spring 2.5 的最大的亮点之一。合理地使用 Spring 2.5 的注释配置,可以有效减少配置的工作量,提高程序的内聚性。但是这并不意味着传统 XML 配置将走向消亡,在第三方类 Bean 的配置,以及那些诸如数据源、缓存池、持久层操作模板类、事务管理等内容的配置上,XML 配置依然拥有不可替代的地位。

转载自:http://blog.csdn.net/wangzhewang/article/details/7216877

### 回答1: Matlab转Python是一个相对容易的过程。虽然两者是不同的编程语言,但是它们有很多相似之处,因此相对容易进行转换。 首先,Matlab主要用于数值计算和数据分析,而Python是一种通用编程语言,拥有更广泛的应用领域。因此,如果你想在其他领域应用你的代码,转换到Python可能是一个不错的选择。 其次,Matlab和Python都有广泛的可扩展性和功能强大的库。在Matlab中,你可能已经熟悉了一些常用的库,比如MATLAB数学库、统计工具箱和信号处理工具箱等。幸运的是,Python也有类似的功能库,比如NumPy、SciPy和Pandas等,你可以用它们来替换Matlab中的相应功能。这些库在Python社区中非常活跃,有很多支持和资源可用。 转换Matlab代码到Python的过程通常包括以下几个步骤: 1. 熟悉Python语法和基本概念。这包括学习Python的变量和数据类型、控制流和函数等基本知识。 2. 寻找等价的Python函数和库。你可以使用NumPy来替换Matlab中的矩阵和向量运算,使用SciPy和Pandas来替换Matlab中的数值计算和数据分析功能。 3. 将Matlab代码逐行转换为Python代码。在转换过程中,还需要注意有些函数名和参数在Python中有所不同,所以需要做一些适当的修改。 4. 测试和调试转换后的代码。在转换完成后,务必进行充分的测试和调试,确保代码在Python环境中能够正常运行。 总的来说,Matlab转Python是一个适应性强的过程,需要一些学习和调试的时间,但是一旦你熟悉了Python的基本语法和常用库,转换过程就会变得相对容易。所以,如果你想在其他领域应用你的代码,考虑转换到Python是一个不错的选择。 ### 回答2: MATLAB转Python需要注意以下几点。 首先,MATLAB和Python在语法和特性上有一些差异。MATLAB是一种专门用于数值计算和数据分析的高级编程语言,而Python是一种通用的编程语言,有更广泛的应用领域。因此,在转换时,需要理解Python的语法规则和特性,以便正确地将MATLAB代码转换为Python代码。 其次,MATLAB和Python在库和函数方面有不同的选择。MATLAB有自己的一套处理数值计算和数据分析的函数和工具包,而Python有丰富的第三方库,如NumPy、SciPy和Pandas等,可以进行类似的操作。在转换时,需要找到相应的Python库和函数来替换MATLAB中的功能。 另外,MATLAB和Python在数据类型和内存管理方面也有所差异。MATLAB使用动态类型和自动内存管理,而Python有静态类型和手动内存管理。因此,在转换时,需要注意数据类型和内存管理的变化,以避免潜在的错误和性能问题。 最后,还需要考虑MATLAB中的图形和可视化功能。MATLAB在科学可视化方面有很高的知名度,而Python也有一些相应的库,如Matplotlib和Seaborn等,可以进行类似的图形和可视化操作。在转换时,需要找到适合自己需求的Python库和方法来实现相应的图形和可视化效果。 综上所述,MATLAB转Python需要理解Python的语法和特性、选择适当的库和函数、解决数据类型和内存管理问题,并找到相应的图形和可视化方法。只有深入理解这些差异,并有相应的转换策略,才能成功地将MATLAB代码转换为Python代码。 ### 回答3: Matlab是一种专业的科学计算语言和环境,广泛应用于各个领域的工程和科学研究。Python是一种多功能的编程语言,具有简洁的语法和丰富的库,被广泛用于数据科学、机器学习和人工智能等领域。 将Matlab转换为Python有以下几种方式: 1. 使用Matlab Engine for Python:Mathworks提供了一种方式,可以在Python环境中使用Matlab。用户可以通过调用Matlab Engine for Python,将Matlab的函数和工具包嵌入到Python代码中。 2. 利用Numpy和Scipy库:Python中有一些开源库可以替代Matlab的功能。Numpy是一个强大的数值计算库,提供了类似于Matlab的数组操作和矩阵计算。Scipy是一个科学计算库,包含了各种数学、科学和工程计算的函数和工具。 3. 使用Python的绘图库:Python有很多强大的绘图库,例如Matplotlib和Seaborn,可以用于数据可视化和绘制图表。这些库提供了类似于Matlab的绘图功能,且更加灵活和可定制。 4. 迁移Matlab代码到Python:对于一些简单的Matlab代码,可以通过手动将代码逐行转换来实现。Python和Matlab之间的语法差异不大,可以很容易地将代码结构和逻辑转换为Python代码。 需要注意的是,由于Matlab和Python有一些差异,转换可能会涉及到一些具体的语法和函数的变化。因此,在进行转换之前,最好熟悉Python的语法和常用库的使用。 综上所述,将Matlab转换为Python是可行的,可以通过不同的方式进行转换,具体方法应根据实际需求和代码复杂度来决定。但无论采用什么方法,都需要进行小心谨慎的转换,以确保代码的正确性和功能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值