算法——简易综合计算器(后缀表达式)栈

在这里插入图片描述

  1. 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
  2. 从左至右扫描中缀表达式;
  3. 遇到操作数时,将其压s2;
  4. 遇到运算符时,比较其与s1栈顶运算符的优先级:
    1. 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
    2. 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
    3. 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较;
  5. 遇到括号时:
    1. 如果是左括号“(”,则直接压入s1
    2. 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
  6. 重复步骤2至5,直到表达式的最右边
  7. 将s1中剩余的运算符依次弹出并压入s2
  8. 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式
public class PolandNotation {
	public static void main(String[] args) {
			
		//完成将一个中缀表达式转成后缀表达式的功能:说明:
		//	因为直接对str进行操作不方便,因此先将  1+((2+3)×4)-5 => 中缀的表达式转化为List
		//即 "1+((2+3)×4)-5" => [1,+,(,(,2,+,3,),*,4,),-,5]
		//	将得到的中缀表达式对应的List => 后缀表达式对应的List
		//即 [1,+,(,(,2,+,3,),*,4,),-,5] => [1,2,3,+,4,*,+,5,–]
		
		String expression = "1+((2+3)*4)-5";//注意表达式 
		List<String> infixExpressionList = toInfixExpressionList(expression);
		List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
		
		System.out.printf("expression=%d", calculate(suffixExpreesionList)); //值
	}
	
	//方法:将 中缀表达式转成对应的List
	public static List<String> toInfixExpressionList(String s) {
		List<String> ls = new ArrayList<String>();
		int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
		String str; // 对多位数的拼接
		char c; // 每遍历到一个字符,就放入到c
		do {
			if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {//非数字
				ls.add("" + c);
				i++; //i需要后移
			} else { //如果是数,需要考虑多位数
				str = ""; //先将str 置成"" 
				while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
					str += c;//拼接
					i++;
				}
				ls.add(str);
			}
		}while(i < s.length());
		return ls;
	}
		
	//[1,+,(,(,2,+,3,),*,4,),-,5]  => [1,2,3,+,4,*,+,5,–]
	//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
	public static List<String> parseSuffixExpreesionList(List<String> ls) {
		//定义两个栈
		Stack<String> s1 = new Stack<String>(); // 符号栈
		//说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
		//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
		//Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
		List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
		
		//遍历ls:中缀表达式对应的List
		for(String item: ls) {			
			if(item.matches("\\d+")) {//如果是一个数,加入s2
				s2.add(item);
			} else if ("(".equals(item)) {
				s1.push(item);
			} else if (")".equals(item)) {//依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,并丢弃这一对括号
				while(!"(".equals(s1.peek())) {
					s2.add(s1.pop());
				}
				s1.pop();//将 ( 弹出 s1栈, 消除小括号!!! 
			} else {
				//当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
				while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
					s2.add(s1.pop());
				}				
				s1.push(item);//还需要将item压入栈
			}
		}				
		while(s1.size() != 0) {//将s1中剩余的运算符依次弹出并加入s2
			s2.add(s1.pop());
		}
		return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List		
	}
	
	//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
	public static List<String> getListString(String suffixExpression) {		
		String[] split = suffixExpression.split(" ");//分割
		List<String> list = new ArrayList<String>();
		for(String ele: split) {
			list.add(ele);
		}
		return list;		
	}
	
	//完成对逆波兰表达式的运算
	public static int calculate(List<String> ls) {		
		Stack<String> stack = new Stack<String>();// 只需要一个栈即可
		// 遍历 ls:后缀表达式对应的List
		for (String item : ls) {
			if (item.matches("\\d+")) { //使用正则表达式来取出数,匹配的是多位数				
				stack.push(item);// 入栈
			} else {
				// pop出两个数,并运算, 再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}				
				stack.push("" + res);//把res 入栈
			}			
		}		
		return Integer.parseInt(stack.pop());//最后留在stack中的数据是运算结果
	}
}

//类 Operation 可以返回一个运算符 对应的优先级
class Operation {
	private static int ADD = 1;
	private static int SUB = 1;
	private static int MUL = 2;
	private static int DIV = 2;	
	//返回对应的优先级数字
	public static int getValue(String operation) {
		int result = 0;
		switch (operation) {
		case "+":
			result = ADD;
			break;
		case "-":
			result = SUB;
			break;
		case "*":
			result = MUL;
			break;
		case "/":
			result = DIV;
			break;
		default:
			System.out.println("不存在该运算符" + operation);
			break;
		}
		return result;
	}	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值