Exact Adversarial Attack to Image Captioning via Structured Output Learning with Latent Variables

Exact Adversarial Attack to Image Captioning via Structured Output Learning with Latent Variables

原文地址

时间:2019 CVPR

Intro

深度神经网络对于恶意样本是很脆弱的,即便这些样本和普通样本看起来几乎没有区别,大多数对于这一问题的研究都是基于卷积神经网络的任务(图像分类、目标检测),它们的损失函数输出都是独立的,因此很容易通过梯度来生成恶意噪声(adversarial noises),然而对于结构化的输出,这个梯度就很难计算,比如image caption

给一个训练好的CNN+RNN的image caption模型,通过添加恶意噪声我们想要欺骗模型来输出目标部分输出(targeted partial caption),它与图像的内容完全无关,这个任务称为exact adversarial attack of targeted partial captions,以前的工作中还未被研究过,如图所示
在这里插入图片描述
一个目标部分输出(targeted partial caption)指的是某些位置的词是确定的,而其他位置的词没有指定,或者说是latent的,当所有位置的词都被指定,这就是一个targeted complete caption,如上图©所示

本文的贡献:

  • 首次提出targeted partial caption的学习
  • 将问题形式化为带隐变量的结构化输出学习
  • state-of-the-art的Image caption模型可以被很容易的攻击
  • 使用攻击方法来理解image caption的内层机理

Structured Outputs of CNN+RNN based Image Captioning Systems

给定CNN+RNN模型以及参数 θ \theta θ,和一张不稳定的图片 I = I 0 + ϵ ∈ [ 0 , 1 ] I=I_0+\epsilon \in [0,1] I=I0+ϵ[0,1],caption S S S的后验概率为
在这里插入图片描述
其中 I 0 I_0 I0是普通的图片, ϵ \epsilon ϵ是恶意噪声, S = S 1 , S 2 , . . . , S N S={S_1,S_2,...,S_N} S=S1,S2,...,SN

partial caption 记为 S O S_\mathcal{O} SO,意味着位置 O \mathcal{O} O上的词被指定了, O ⊂ 1 , 2 , . . . , N \mathcal{O}\subset{1,2,...,N} O1,2,...,N,latent variable记为 S H S_\mathcal{H} SH,则partial caption的后验概率 S O S_\mathcal{O} SO记为
在这里插入图片描述
其中 ∑ S H \sum_{S_\mathcal{H}} SH表示在所有可能的latent variables S H S_\mathcal{H} SH上求和

Adversarial Attack of Targeted Partial Captions to Image Captioning

learning ϵ \epsilon ϵ,学习目标是让预测的caption S S S S O S_\mathcal{O} SO尽可能兼容,因此,在最小化恶意误差的同时,需要采用以下两者之一的criterion:(1)最大化log marginal likelihood l n P ( S O = S O ∣ ϵ ) lnP(\mathbf{S}_\mathcal{O}=S_\mathcal{O}|\epsilon) lnP(SO=SOϵ)(2)最大化目标caption和其他caption之间的margin, l n P ( S O = S O ∣ ϵ ) lnP(\mathbf{S}_\mathcal{O}=S_\mathcal{O}|\epsilon) lnP(SO=SOϵ) l n P ( S O 不 等 于 S O ∣ ϵ ) lnP(\mathbf{S}_\mathcal{O}不等于S_\mathcal{O}|\epsilon) lnP(SOSOϵ)

Inference,给定最优的 ϵ \epsilon ϵ,caption生成为
在这里插入图片描述

Maximizing Log Marginal Likelihood via Generalized EM Algorithm

根据第一个criterion,目标函数为
在这里插入图片描述
并满足约束 I 0 + ϵ ∈ [ 0 , 1 ] I_0+\epsilon\in[0,1] I0+ϵ[0,1],这个约束可以通过clipping满足,因为要计算 ∑ S H \sum_{S_{\mathcal{H}}} SH,所以难以优化,为了解决这个问题,我们使用了generalized expectation maximization(GEM)算法,GEM的核心思想是利用factorized posterior q ( S H ) = ∏ t ∈ H q ( S t ) q(S_\mathcal{H})=\prod_{t\in\mathcal{H}}q(S_t) q(SH)=tHq(St)来逼近posterior probability P ( S H ∣ S O , ϵ ) P(S_H|S_\mathcal{O},\epsilon) P(SHSO,ϵ)

Structural SVMs with Latent Variables

根据第二个criterion,恶意噪声 ϵ \epsilon ϵ是通过带隐变量的结构化SVMs得到的
在这里插入图片描述
优化时通过优化它的两个子问题进行

Experiments

实验在Show-Attend-and-Tell、SCST和show-and-tell上进行,并与show-and-fool进行对比
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
passive attack
在这里插入图片描述
untargeted attack
f

Conclusion

本文提出了一种欺骗CNN+RNN的image caption模型的方法,将问题形式化为生成结构化输出的学习问题,使用了两个不同的criterion来进行优化,结果表明,我们的模型能很容易地欺骗SoTA的image caption 模型,表明了当前的image captioning模型与人类captioning相去甚远

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值