HODJ1166敌兵布阵树状数组和线段树求解

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1166

基维百科:http://zh.wikipedia.org/wiki/%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84

http://duanple.blog.163.com/blog/static/7097176720081131113145832/

树状数组源码及部分注释:

#include<stdio.h>
#include<string.h>
#define MAX 50010
int N;
int per[MAX],C[MAX];

int lowbit(int n)
{//此函数实际就是将n的二进制表示形式留下最右边的1,其他位都变为0
	return n&(-n);
}
void update(int i,int x)//更新值
{
	while(i <= N)
	{
		C[i] += x;
		i += lowbit(i);
	}
}
int check(int n)//求从第一个数到第n个数的和
{
	int sum = 0;
	while( n > 0)
	{
		sum += C[n];
		n -= lowbit(n);
	}
	return sum;
}
int main()
{
	int i,T,k,j,num = 1,a,b;
	char str[10];
	scanf("%d",&T);
	while( T-- )
	{
		scanf("%d",&N);
		//初始化数组C
		memset(C,0,sizeof(C));
		//输入原始数据
		for(i = 1; i <= N; i++)
			scanf("%d",&per[i]);

		//构造树状数组
		for(i = 1; i <= N; i++)
		{
			j = lowbit(i);
			for(k = i - j + 1; k <= i; k++)
				C[i] += per[k];
		}
		printf("Case %d:\n",num++);
		while(scanf("%s",str) && str[0] != 'E')
		{
			scanf("%d%d",&a,&b);
			switch( str[0] )
			{
			case 'Q':
				printf("%d\n",check(b) - check(a-1));
				break;
			case 'S':
				update(a,-b);
				break;
			case 'A':
				update(a,b);
				break;
			}
		}
	}
	return 0;
}

 

线段树Segment Tree)是一种二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点

对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树。叶节点数目为N,即整个线段区间的长度。

使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。


线段树求解源代码及部分注释:

 
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define maxn 50010
struct node 
{
	int left,right;
	int count;
}st[maxn * 6];
void build(int curnode,int left,int right)//创建线段树,
{
	st[curnode].left = left;
	st[curnode].right = right;
	st[curnode].count = 0;
	if(left == right)//当到达叶子节点的时候则返回
		return ;
	//将子树继续二分,
	build(curnode*2,left,(left+right)/2);
	build(curnode*2+1,(left+right)/2+1,right);
}
void update(int curnode,int seq,int cnt)
{//更新线段树
	if(seq <= st[curnode].right && seq >= st[curnode].left)
	{
		st[curnode].count += cnt;
		update(curnode*2,seq,cnt);
		update(curnode*2+1,seq,cnt);
	}
}
int total;
void sum(int curnode,int left,int right)
{//求和
	int mid = (st[curnode].left + st[curnode].right)/2;
	if(st[curnode].left == left && st[curnode].right == right)
		total += st[curnode].count;
	else
		if(right <= mid )
			sum(curnode * 2,left,right);
		else
			if(left > mid)
				sum(curnode*2+1,left,right);
			else
			{
				sum(curnode*2,left,mid);
				sum(curnode*2+1,mid+1,right);
			}
}
int main()
{
	int T,num,pernum,i;
	char ins[10];
	int a,b,c = 1,flg;
	scanf("%d",&T);
	while( T--)
	{
		scanf("%d",&num);
		memset(st,0,sizeof(st));
		build(1,1,num);
		for( i = 1; i <= num; i++)
		{
			scanf("%d",&pernum);
			update(1,i,pernum);
		}
	 printf("Case %d:\n", c++);
	 flg = 1;
		while( scanf("%s",ins) != EOF && ins[0] != 'E')
		{
			
			scanf("%d%d",&a,&b);
			switch(ins[0])
			{
			case 'Q':
				total = 0;
				sum(1,a,b);
				printf("%d\n",total);
				break;
			case 'A':
				update(1,a,b);
				break;
			case 'S':
				update(1,a,-b);
				break;
				
			}
		}
	}
	return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值