【Python】windows开发环境搭建

1、准备

1)支持windows的服务器/笔记本/台式机(64位)
2)jdk 1.8
3)Python 3.6版本
4)eclipse 4.5 或更高版本
5)PyDev eclipse插件

以上文件需要和windows系统(64位)一致,或是都选择32位 看各自的系统而定。

2、安装jdk

1)官网下载对应的版本
2)下载完成直接点击 .exe文件 进行安装 next 直到完成
	新建 JAVA_HOME 添加
			D:\Java\jdk1.8.0_161
	在path中添加
			 ;%JAVA_HOME%\bin;
	新建 CLASSPATH添加
	        .;%JAVA_HOME%\lib;%JAVA_HOME%\lib\tools.jar
  3)检查是否安装成功
		运行cmd 输入 java -version  出现版本信息说明安装成功。

3、安装Python

1)官网下载 Python 3.6
2)运行.exe文件进行安装
3) next 直到最后 会有是否自动添加环境变量的选项,勾选上即可
4)验证是否安装成功
		运行cmd 输入 python 进入python 安装成功,突出使用exit();

4、eclipse 插件安装

	1)官网下载 4.5以上的版本(使用免安装的版本,相对来说很简单)
	2 )  将下载后的zip文件解压到某个磁盘目录下 .
    3)解压下载好的PyDev文件 会有两个目录 将目录中的文件复制到 eclipse 解压后的文件夹对应名字的文件夹中(plugins、features)
	4)运行eclipse.exe 文件,选择一个工作空间,打开后要设置一下 workspace等的编码格式,个人偏好设置为utf-8
	5)验证插件是否安装成功,
		查看运行后的eclipse 中存在 Window-Preferences-PyDev 

注:
python :https://www.python.org/
jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
eclipse:https://www.eclipse.org/downloads/
PyDev:http://www.pydev.org/updates/

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值