素数算法

算法简单版

1、给定一个正整数n,用2到sqrt(n)之间的所有整数去除n,如果可以整除,则n不是素数,如果不可以整除,则n就是素数。这个算法的时间复杂度十分明 了,为O(sqrt(n)),算法的描述相当简单,实现也一样不困难。

public boolean isPrime(int n){
    for(int i = 2; i * i <= n; i++){
  if(n % i == 0)
   return false;
  }
    return true;
}

2、测试能不能将这个数表示为两个比它小的数的乘积。

 public static void main(String[] args) {
  int s=0;
  int i;
  for(i=0;i<=100;i++)
  {
 int j;
 for(j=2;j<=i;j++){
  if(i%j==0)
   break;
 }
 if(i==j)
  System.out.println(i);
  }

 }

}

 

 

3、高级的Rabin-Miller检验法

首先选择一个代测的随机数p,计算b,b是2整除p-1的次数。然后计算m,使得n=1+(2^b)m。

(1) 选择一个小于p的随机数a。
(2) 设j=0且z=a^m mod p
(3) 如果z=1或z=p-1,那麽p通过测试,可能使素数
(4) 如果j>0且z=1, 那麽p不是素数
(5) 设j=j+1。如果j<b且z<>p-1,设z=z^2 mod p,然后回到(4)。如果z=p-1,那麽p通过测试,可能为素数。
(6) 如果j=b 且z<>p-1,不是素数

数a被当成证据的概率为75%。这意味着当迭代次数为t时,它产生一个假的素数所花费的时间不超过1/4^t。实际上,对大多数随机数,几乎 99.99%肯定a是证据。

实际考虑:

在实际算法,产生素数是很快的。

(1) 产生一个n-位的随机数p
(2) 设高位和低位为1(设高位是为了保证位数,设低位是为了保证位奇数)
(3) 检查以确保p不能被任何小素数整除:如3,5,7,11等等。有效的方法是测试小于2000的素数。使用字轮方法更快
(4) 对某随机数a运行Rabin-Miller检测,如果p通过,则另外产生一个随机数a,在测试。选取较小的a值,以保证速度。做5次 Rabin-Miller测试如果p在其中失败,从新产生p,再测试。

经测试,这个算法在sun的Sparc II工作站上实现:
2 .8秒产生一个256位的素数
24.0秒产生一个512位的素数
2分钟产生一个768位的素数
5.1分钟产生一个1024位的素数

阅读更多
想对作者说点什么? 我来说一句

素数算法素数代码

2011年12月22日 32KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭