导读:
难度还不错,大家看看吧,能作出几道??
题 目 开 始 了
1.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢(从此刻开始计时)?
2.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
3.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?(补充限制条件:总共只能问一个问题。比如说问了甲一个问题后就不能再问了,当然也不能再问乙。)
4.在9个点上画10条直线,要求每条直线上至少有三个点?
5.你让工人为你工作7天,回报是一根金条,这个金条平分成相连的7段,你必须在每天结束的时候给他们一段金条。如果只允许你两次把金条弄断,你如何给你的工人付费?
6.地球上有多少这样的点:你先朝南走一公里,再向东一公里,再向北1公里,这时你回到了你的起点上?(微软测试题)
7.某个班级一共49人,恰好都喜欢打乒乓球,于是班里准备举办一场乒乓球比赛,所有同学都参加,比赛采用单场淘汰制,即每场比赛的败者就被淘汰;班里一共有两个乒乓球台,每天只能下午比赛一次,也就是说每天比赛两场,现在问:需要通过多少天的比赛,才能产生最后的冠军?
8.五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。他们决定先抽签决定自己的号码(1、2、3、4、5),然后按下面的方法进行:
首先,由1号提出分配方案,然后大家表决(本人也参与投票),当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼;
如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼;
依此类推。
条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?
补充一点:
海盗做出选择的优先顺序是:(1)保住自己的性命;(2)得到尽可能多的宝石;(3)在前两个条件前提下,尽量多杀人。(呵呵,他们是海盗哦……)(微软测试题)
9.村子里有50个人,每人有一条狗,在这50条狗中有病狗(这种病不传染),于是人们要找出病狗。
每个人可以观察其他49条狗,以判断他们是否生病,(如果有病一定能看出来),只有自己的狗不能看,观察后得到的结果不得交流,也不能通知病狗的主人。主人一旦推算出自己家的狗是病狗就是枪毙自己的狗(发现后必须在一天内枪毙),而且每个人只有权利枪毙自己的狗,没有权利打死其他人的狗。
第一天大家全看完了,但枪没有响,到了第三天传来一阵枪声,问村里共有几条病狗,如何推算出来的?(IBM测试题)
答 案 揭 晓
1题答案(参考,MS3根绳子也行):用六根绳子a,b,c,d,e,f。同时点燃a的两端和b、c的一端,当a燃完,恰时30分钟,此刻点燃b的另一端和d的一端以及f的两端,当b燃完,恰时45分钟,此刻点燃e的两端,当c燃完,(f同时燃完)则恰时60分钟,此刻点燃d的另一端,当d(e同时)燃完时即为75分钟。
2题答案分四步:
(1)将5公斤水桶装满;
(2)将5公斤水桶的水往3公斤水桶倒,如此5公斤水桶里还剩2公斤;
(3)将3公斤水桶的水全部倒出,把5公斤水桶里剩下的2公斤倒入,如此3公斤水桶里有2公斤水;
(4)将5公斤水桶装满后,往3公斤水桶倒直到倒满,因为之前3公斤水桶里有2公斤水,还需要倒入1公斤水,这样5公斤水桶中就倒出去1公斤,剩下4公斤水了。
3题:答案随便问一个人:“如果我问另一个人这样的问题:‘说谎国应该走哪条路?’他会指给我哪条路?”一真且一假必为假话。然后根据他的答案走相反的那条路就可以到达了。
4题如图
。 。
。
。。。
。
。 。
5题答案:分成1/7、2/7、4/7。第一天给1/7;第二天给2/7,拿回之前的1/7;第三天给1/7;第四天给4/7,拿加之前给的1/7和2/7;第五天给1/7;第六天给2/7,拿回之前给的1/7;第七天给1/7。
6题答案是无数个点。想到了吗?(经典)
从北极点出发,任何方向都是南。于是从北极点出发,向三个方向分别走一公里,回到极点(这样的事情在南极点上不能发生,南极点已经不能再向南了)。但这只是其中的一个答案。
答案的关键正是在南极点上。
假定你站在离开南极点一公里多一些的地方走向南极。走完向南的一公里后,你还未曾达到南极点,但已经非常接近。于是你继续向东,因为实在离南极点太近,你发现不断向东走的路线形成了一个以南极为圆心,与赤道平行的圆,它的周长刚好一公里。这样一来,你回到了圆形的出发点。往北一公里后,你回到原点。这样一来,答题的点增加到了无数。
完了吗?并没有,你还可以增加一些点,比如,那个圆形的周长恰好是1/2公里、1/4公里、1/8公里......
只有回答出后面两类答案的人,才有资格被微软留下来。
7题答案24天。全班一共49人,最后的冠军只有一个,所以一共要淘汰48人;每天只能比赛两场,而每场比赛只能淘汰一人,也就是每天只能淘汰2人,所以一共需要48/2=24天!
8题答案应该是97,0,1,2,0或者97,0,1,0,2
思路是这样的:
如果最后只剩下4、5,那么5必反对,4挂定了(4就算分0、100,5也反对,因为能多杀一个人)最后只剩下5,5也能全得到);
所以4如果能够分到的话,不可能等到只剩下4、5;
所以3的分法是:100、0、0(4必须赞同,否则3被PASS,就只剩下4、5);
所以2的分法是:98、0、1、1(4能够得到的话当然赞同,5也一样,因为到了3分的时候,结果是100、0、0);
所以1的分法是:97、0、1、0、2,或97、0、1、2、0(按2的分法,3得0,所以3只要得1就能投赞成票,4、5只要争取一个就可以了。)
9题很复杂
第一种推论(解法一):
A、假设有1条病狗,病狗的主人会看到其他狗都没有病,那么就知道自己的狗有病,所以第一天晚上就会有枪响。因为没有枪响,说明病狗数大于1。
B、假设有2条病狗,病狗的主人会看到有1条病狗,因为第一天没有听到枪响,是病狗数大于1,所以病狗的主人会知道自己的狗是病狗,因而第二天会有枪响。既然第二天也每有枪响,说明病狗数大于2。
由此推理,如果第三天枪响,则有3条病狗。
第二种推论(解法二):
1如果为1,第一天那条狗必死,因为狗主人没看到病狗,但病狗存在。
2 若为2,令病狗主人为a,b。 a看到一条病狗,b也看到一条病狗,但a看到b的病狗没死故知狗数不为1,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b的想法与a一样,故也开枪。
由此,为2时,第一天看后2条狗必死。
3 若为3条,令狗主人为a,b,c。 a第一天看到2条病狗,若a设自己的不是病狗,由推理2,第二天看时,那2条狗没死,故狗数肯定不是2,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b和c的想法与a一样,故也开枪。
由此,为3时,第二天看后3条狗必死。
4若为4条,令狗主人为a,b,c,d。a第一天看到3条病狗,若a设自己的不是病狗,由推理3,第三天看时,那3条狗没死,故狗数肯定不是3,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b和c,d的想法与a一样,故也开枪。
由此,为4时,第三天看后4条狗必死。
5 余下即为递推了,由年n-1推出n。
答案:n为4。第四天看时,狗已死了,但是在第三天死的,故答案是3条
本文转自
http://blog.sina.com.cn/s/blog_4a508544010005jw.html
难度还不错,大家看看吧,能作出几道??
题 目 开 始 了
1.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢(从此刻开始计时)?
2.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
3.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?(补充限制条件:总共只能问一个问题。比如说问了甲一个问题后就不能再问了,当然也不能再问乙。)
4.在9个点上画10条直线,要求每条直线上至少有三个点?
5.你让工人为你工作7天,回报是一根金条,这个金条平分成相连的7段,你必须在每天结束的时候给他们一段金条。如果只允许你两次把金条弄断,你如何给你的工人付费?
6.地球上有多少这样的点:你先朝南走一公里,再向东一公里,再向北1公里,这时你回到了你的起点上?(微软测试题)
7.某个班级一共49人,恰好都喜欢打乒乓球,于是班里准备举办一场乒乓球比赛,所有同学都参加,比赛采用单场淘汰制,即每场比赛的败者就被淘汰;班里一共有两个乒乓球台,每天只能下午比赛一次,也就是说每天比赛两场,现在问:需要通过多少天的比赛,才能产生最后的冠军?
8.五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。他们决定先抽签决定自己的号码(1、2、3、4、5),然后按下面的方法进行:
首先,由1号提出分配方案,然后大家表决(本人也参与投票),当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼;
如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼;
依此类推。
条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?
补充一点:
海盗做出选择的优先顺序是:(1)保住自己的性命;(2)得到尽可能多的宝石;(3)在前两个条件前提下,尽量多杀人。(呵呵,他们是海盗哦……)(微软测试题)
9.村子里有50个人,每人有一条狗,在这50条狗中有病狗(这种病不传染),于是人们要找出病狗。
每个人可以观察其他49条狗,以判断他们是否生病,(如果有病一定能看出来),只有自己的狗不能看,观察后得到的结果不得交流,也不能通知病狗的主人。主人一旦推算出自己家的狗是病狗就是枪毙自己的狗(发现后必须在一天内枪毙),而且每个人只有权利枪毙自己的狗,没有权利打死其他人的狗。
第一天大家全看完了,但枪没有响,到了第三天传来一阵枪声,问村里共有几条病狗,如何推算出来的?(IBM测试题)
答 案 揭 晓
1题答案(参考,MS3根绳子也行):用六根绳子a,b,c,d,e,f。同时点燃a的两端和b、c的一端,当a燃完,恰时30分钟,此刻点燃b的另一端和d的一端以及f的两端,当b燃完,恰时45分钟,此刻点燃e的两端,当c燃完,(f同时燃完)则恰时60分钟,此刻点燃d的另一端,当d(e同时)燃完时即为75分钟。
2题答案分四步:
(1)将5公斤水桶装满;
(2)将5公斤水桶的水往3公斤水桶倒,如此5公斤水桶里还剩2公斤;
(3)将3公斤水桶的水全部倒出,把5公斤水桶里剩下的2公斤倒入,如此3公斤水桶里有2公斤水;
(4)将5公斤水桶装满后,往3公斤水桶倒直到倒满,因为之前3公斤水桶里有2公斤水,还需要倒入1公斤水,这样5公斤水桶中就倒出去1公斤,剩下4公斤水了。
3题:答案随便问一个人:“如果我问另一个人这样的问题:‘说谎国应该走哪条路?’他会指给我哪条路?”一真且一假必为假话。然后根据他的答案走相反的那条路就可以到达了。
4题如图
。 。
。
。。。
。
。 。
5题答案:分成1/7、2/7、4/7。第一天给1/7;第二天给2/7,拿回之前的1/7;第三天给1/7;第四天给4/7,拿加之前给的1/7和2/7;第五天给1/7;第六天给2/7,拿回之前给的1/7;第七天给1/7。
6题答案是无数个点。想到了吗?(经典)
从北极点出发,任何方向都是南。于是从北极点出发,向三个方向分别走一公里,回到极点(这样的事情在南极点上不能发生,南极点已经不能再向南了)。但这只是其中的一个答案。
答案的关键正是在南极点上。
假定你站在离开南极点一公里多一些的地方走向南极。走完向南的一公里后,你还未曾达到南极点,但已经非常接近。于是你继续向东,因为实在离南极点太近,你发现不断向东走的路线形成了一个以南极为圆心,与赤道平行的圆,它的周长刚好一公里。这样一来,你回到了圆形的出发点。往北一公里后,你回到原点。这样一来,答题的点增加到了无数。
完了吗?并没有,你还可以增加一些点,比如,那个圆形的周长恰好是1/2公里、1/4公里、1/8公里......
只有回答出后面两类答案的人,才有资格被微软留下来。
7题答案24天。全班一共49人,最后的冠军只有一个,所以一共要淘汰48人;每天只能比赛两场,而每场比赛只能淘汰一人,也就是每天只能淘汰2人,所以一共需要48/2=24天!
8题答案应该是97,0,1,2,0或者97,0,1,0,2
思路是这样的:
如果最后只剩下4、5,那么5必反对,4挂定了(4就算分0、100,5也反对,因为能多杀一个人)最后只剩下5,5也能全得到);
所以4如果能够分到的话,不可能等到只剩下4、5;
所以3的分法是:100、0、0(4必须赞同,否则3被PASS,就只剩下4、5);
所以2的分法是:98、0、1、1(4能够得到的话当然赞同,5也一样,因为到了3分的时候,结果是100、0、0);
所以1的分法是:97、0、1、0、2,或97、0、1、2、0(按2的分法,3得0,所以3只要得1就能投赞成票,4、5只要争取一个就可以了。)
9题很复杂
第一种推论(解法一):
A、假设有1条病狗,病狗的主人会看到其他狗都没有病,那么就知道自己的狗有病,所以第一天晚上就会有枪响。因为没有枪响,说明病狗数大于1。
B、假设有2条病狗,病狗的主人会看到有1条病狗,因为第一天没有听到枪响,是病狗数大于1,所以病狗的主人会知道自己的狗是病狗,因而第二天会有枪响。既然第二天也每有枪响,说明病狗数大于2。
由此推理,如果第三天枪响,则有3条病狗。
第二种推论(解法二):
1如果为1,第一天那条狗必死,因为狗主人没看到病狗,但病狗存在。
2 若为2,令病狗主人为a,b。 a看到一条病狗,b也看到一条病狗,但a看到b的病狗没死故知狗数不为1,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b的想法与a一样,故也开枪。
由此,为2时,第一天看后2条狗必死。
3 若为3条,令狗主人为a,b,c。 a第一天看到2条病狗,若a设自己的不是病狗,由推理2,第二天看时,那2条狗没死,故狗数肯定不是2,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b和c的想法与a一样,故也开枪。
由此,为3时,第二天看后3条狗必死。
4若为4条,令狗主人为a,b,c,d。a第一天看到3条病狗,若a设自己的不是病狗,由推理3,第三天看时,那3条狗没死,故狗数肯定不是3,而其他人没病狗,所以自己的狗必为病狗,故开枪;而b和c,d的想法与a一样,故也开枪。
由此,为4时,第三天看后4条狗必死。
5 余下即为递推了,由年n-1推出n。
答案:n为4。第四天看时,狗已死了,但是在第三天死的,故答案是3条
本文转自
http://blog.sina.com.cn/s/blog_4a508544010005jw.html