最大公约数
解法一:更相减损术(等值算法)
《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
具体步骤如下:
- 对于任意给定的两个正整数,判断它们是否都为偶数;若是,则用2约简;否则执行第二步;
- 以交大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数;继续这个操作,直到所得的减数和差相等为止;
此时,第一步约简掉的若干个2与第二步中等数的乘积就是所求最大公约数;
示例:更相减损术求260与104的最大公约数
首先260与104都是偶数,先以2约简
1. 260 / 2 = 130; 104 / 2 = 52; // 130与52都是偶数,继续第一步;
2. 130 / 2 = 65; 52 / 2 = 26; // 65非偶数,进行第二步;
3. 65 - 26 = 39;
4. 39 - 26 = 13;
5. 26 - 13 = 13;
所以最大公约数为 2 * 2 * 13 = 52;
代码示例:
function gcd(a, b) {
let max = Math.max(a, b),
min = Math.min(a, b),
diff = max - min;
while (max !== min) {
diff = max - min;
max = Math.max(min, diff);
min = Math.min(min, diff);
}
return min;
}
解法二:辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
示例:计算319与377的最大公约数
377 / 319 = 0...58
319 / 58 = 5...29
58 / 29 = 2...0
代码示例:
function gcd(a, b) {
let max = Math.max(a, b),
min = Math.min(a, b),
reminder = max % min;
while (reminder) {
max = Math.max(min, reminder);
min = Math.min(min, reminder);
reminder = max % min;
}
return min;
}
比较辗转相除法与更相减损术的区别
(1)都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。
解法三:短除法
短除法中所有公共除之积即为最大公约数,公共除数与所有余数之积为最小公倍数;
最小公倍数
解法一:短除法
短除法:所有公共除数与所有余数之积,即为最小公倍数。
function lcd(a, b) {
let max = Math.max(a, b),
min = Math.min(a, b),
product = 1;
for (let i = 2; i <= min; i++) {
while (a % i === 0 && b % i === 0) {
product *= i;
a = Math.floor(a / i);
b = Math.floor(b / i);
}
}
return product * a * b;
}
解法二:lcd(a, b) = a * b / gcd(a, b)
该方法需要先求出gcd(a, b),然后求得lcd(a, b)
最大公约数:GCD,greatest common divisor
最小公倍数:LCM,least common multiple
#! /usr/bin/python3
# -*- coding: utf-8 -*-
def get_GCD_LCM():
'''get the greatest common divisor and the least common multiple
'''
x = int(input('请输入第一个整数x:'))
y = int(input('请输入第二个整数y:'))
gcd = 1
lcm = x * y
if x > y:
x, y = y, x
for i in range(x, 0, -1):
if (x % i == 0 and y % i == 0):
gcd = i
lcm = x * y // i
break
print('%d与%d的最大公约数是%d,最小公倍数是%d' % (x, y, gcd, lcm))
get_GCD_LCM()
### source code from https://github.com/jackfrued/Python-100-Days
def gcd(x, y):
(x, y) = (y, x) if x > y else (x, y)
for factor in range(x, 0, -1):
if x % factor == 0 and y % factor == 0:
return factor
def lcm(x, y):
return x * y // gcd(x, y)
参考文献:
1.https://github.com/jackfrued/Python-100-Days
2. 最大公约数