两个数的最大公约数与最小公倍数

最大公约数

解法一:更相减损术(等值算法)

《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”

具体步骤如下:

  1. 对于任意给定的两个正整数,判断它们是否都为偶数;若是,则用2约简;否则执行第二步;
  2. 以交大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数;继续这个操作,直到所得的减数和差相等为止;

此时,第一步约简掉的若干个2与第二步中等数的乘积就是所求最大公约数;

示例:更相减损术求260与104的最大公约数

首先260与104都是偶数,先以2约简
1. 260 / 2 = 130; 104 / 2 = 52;  // 130与52都是偶数,继续第一步;
2. 130 / 2 = 65; 52 / 2 = 26; // 65非偶数,进行第二步;
3. 65 - 26 = 39;
4. 39 - 26 = 13;
5. 26 - 13 = 13;

所以最大公约数为 2 * 2 * 13 = 52;

代码示例:

function gcd(a, b) {
	let max = Math.max(a, b),
		min = Math.min(a, b),
		diff = max - min;

	while (max !== min) {
		diff = max - min;
		max = Math.max(min, diff);
		min = Math.min(min, diff);
	}

	return min;
}

解法二:辗转相除法

辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

示例:计算319与377的最大公约数

377 / 319 = 0...58
319 / 58 = 5...29
58 / 29 = 2...0

代码示例:

function gcd(a, b) {
	let max = Math.max(a, b),
		min = Math.min(a, b),
		reminder = max % min;

	while (reminder) {
		max = Math.max(min, reminder);
		min = Math.min(min, reminder);
		reminder = max % min;
	}

	return min;
}

比较辗转相除法与更相减损术的区别

(1)都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

解法三:短除法

短除法中所有公共除之积即为最大公约数,公共除数与所有余数之积为最小公倍数

最小公倍数

解法一:短除法

短除法:所有公共除数与所有余数之积,即为最小公倍数。

在这里插入图片描述

function lcd(a, b) {
	let max = Math.max(a, b),
		min = Math.min(a, b),
		product = 1;

	for (let i = 2; i <= min; i++) {
		while (a % i === 0 && b % i === 0) {
			product *= i;
			a = Math.floor(a / i);
			b = Math.floor(b / i);
		}
	}

	return product * a * b;
}

解法二:lcd(a, b) = a * b / gcd(a, b)

该方法需要先求出gcd(a, b),然后求得lcd(a, b)

最大公约数:GCD,greatest common divisor
最小公倍数:LCM,least common multiple

#! /usr/bin/python3
# -*- coding: utf-8 -*-

def get_GCD_LCM():
  '''get the greatest common divisor and the least common multiple

  '''
  x = int(input('请输入第一个整数x:'))
  y = int(input('请输入第二个整数y:'))

  gcd = 1
  lcm = x * y

  if x > y:
    x, y = y, x

  for i in range(x, 0, -1):
    if (x % i == 0 and y % i == 0):
      gcd = i
      lcm = x * y // i
      break
  print('%d与%d的最大公约数是%d,最小公倍数是%d' % (x, y, gcd, lcm))

get_GCD_LCM()

  
### source code from https://github.com/jackfrued/Python-100-Days
def gcd(x, y):
    (x, y) = (y, x) if x > y else (x, y)
    for factor in range(x, 0, -1):
        if x % factor == 0 and y % factor == 0:
            return factor


def lcm(x, y):
    return x * y // gcd(x, y)

参考文献:
1.https://github.com/jackfrued/Python-100-Days
2. 最大公约数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Neil-

你们的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值