问题描述:
今天刮了大风,遇到了一点小问题。老师布置的一道作业里有这么一个问题:用刚学的函数去求两个数的最大公约数和最小公倍数。接下来看一看我对这道题的一个解决思路吧!
问题分析:
首先是要求我们输入两个数m、n,让我们去求它们的最大公约数和最小公倍数。让我们举个例子说一下。
例如:【12和24】12的约数有:1、2、3、4、6、12;24的约数有:1、2、3、4、6、8、12、24。它们共有的约数为:1、2、3、4、6、12,则12和24的最大公约数为12。最小公倍数:能同时对12和24求余等于0的最小的数。所以12和24的最小公倍数就是24。
详细代码如下:
x= int(input('请输入m:'))
y= int(input('请输入n:'))# 首先输入两个数m、n,
def function1(m,n):#定义一个函数,有两个参数m和n
list1 = []#接收m的约数
list2 = []#接收n的约数
list3 = []#接收m和n的共有的约数
list4 = []#接收m和n的公倍数
# (因为如:range(a,b)起始位置可以取a,但是结束位置只能取到b-1,所以要想取到m后面要写成m+1)
for i in range(1, m+1):#循环遍历m的所有约数
if m % i == 0:#此处为判断:用m对所有1到m的数求余
list1.append(i)#把所有符合条件的数加入list1
for j in range(1, n+1):#循环遍历n的所有约数
if n % j == 0:#此处为判断:用n对所有1到n的数求余
list2.append(j)#把所有符合条件的数加入list2
for a in list1:
for b in list2:
if a == b:#表示m和n共有的约数
list3.append(a)#把共有的约数加入到list3
for c in range(1, m*n+1):#因为m*n必然是m和n的公倍数,要求的是最小公倍数,所以可以把m*n作为循环的上限
if c % m == 0 and c % n == 0:#判断是否有能整除m和n的数
list4.append(c)#把能整除m和n的数加入list4
#list3的最大值即为m和n的最大公约数,list4的最小值就是m和n的最小公倍数
print('最大公约数为:{}'.format(max(list3)), '\n最小公倍数为:{}'.format(min(list4)))
function1(x,y)#调用函数并把x的值传给m,y的值传给n
可得到结果如下:
以上就是我对这道题的理解和思路。