编写函数输入两个数m、n,分别输出两个数的最大公约数和最小公倍数。

本文介绍了如何用Python编程解决求两个数的最大公约数(GCD)和最小公倍数(LCM)的问题。通过输入两个数m和n,利用循环和条件判断找出它们的公约数和公倍数,最终计算并输出最大公约数和最小公倍数。示例中以12和24为例,展示了详细的解题步骤和代码实现。
摘要由CSDN通过智能技术生成

问题描述:

今天刮了大风,遇到了一点小问题。老师布置的一道作业里有这么一个问题:用刚学的函数去求两个数的最大公约数和最小公倍数。接下来看一看我对这道题的一个解决思路吧!

问题分析:

首先是要求我们输入两个数m、n,让我们去求它们的最大公约数和最小公倍数。让我们举个例子说一下。

           例如:【12和24】12的约数有:1、2、3、4、6、12;24的约数有:1、2、3、4、6、8、12、24。它们共有的约数为:1、2、3、4、6、12,则12和24的最大公约数为12。最小公倍数:能同时对12和24求余等于0的最小的数。所以12和24的最小公倍数就是24。

详细代码如下:

x= int(input('请输入m:'))
y= int(input('请输入n:'))# 首先输入两个数m、n,
def function1(m,n):#定义一个函数,有两个参数m和n
    list1 = []#接收m的约数
    list2 = []#接收n的约数
    list3 = []#接收m和n的共有的约数
    list4 = []#接收m和n的公倍数

# (因为如:range(a,b)起始位置可以取a,但是结束位置只能取到b-1,所以要想取到m后面要写成m+1)
    for i in range(1, m+1):#循环遍历m的所有约数
        if m % i == 0:#此处为判断:用m对所有1到m的数求余
            list1.append(i)#把所有符合条件的数加入list1

    for j in range(1, n+1):#循环遍历n的所有约数
        if n % j == 0:#此处为判断:用n对所有1到n的数求余
            list2.append(j)#把所有符合条件的数加入list2

    for a in list1:
        for b in list2:
            if a == b:#表示m和n共有的约数
                list3.append(a)#把共有的约数加入到list3

    for c in range(1, m*n+1):#因为m*n必然是m和n的公倍数,要求的是最小公倍数,所以可以把m*n作为循环的上限
        if c % m == 0 and c % n == 0:#判断是否有能整除m和n的数
            list4.append(c)#把能整除m和n的数加入list4

#list3的最大值即为m和n的最大公约数,list4的最小值就是m和n的最小公倍数
    print('最大公约数为:{}'.format(max(list3)), '\n最小公倍数为:{}'.format(min(list4)))
function1(x,y)#调用函数并把x的值传给m,y的值传给n

可得到结果如下:

 以上就是我对这道题的理解和思路。

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值