同济高数-微分

同济高数-微分

映射和函数

映射

  1. 定义

    • 定义: 设 X X X Y Y Y是两个非空集合,如果存在一个法则 f f f,使得对 X X X中的每个元素 x x x,在 Y Y Y中有唯一的确定的元素 y y y与之对应,那么称 f f f为从 X X X l a r g e Y large Y largeY 映 射 \large\color{red}{映射} , 记作: f : X → Y \color{red}f:X\rarr Y f:XY 或者 y = f ( x ) \large\color{red}y = f(x) y=f(x)
    • 相关定义
      • 像: y y y称为像
      • 原像: x x x称为y的原像
      • 值域: 像集合,记作: R f \large\color{red}R_f Rf
      • 定义域: 原像集合,记作: D f \large\color{red}D_f Df
    • 定义总结
    映射
    前提
    非空集合X
    非空集合Y
    规则f
    相关定义
    x相对y称为原像
    原像集合称定义域
    y为像
    像集合称值域
    • 总结: 映射定义,实际表达出来非空集合X和Y之间关系,是研究集合和集合之间关系

    • 注意 R f R_f Rf Y Y Y 之间关系,. R f R_f Rf Y Y Y的子集

  2. 映射种类

    • 关系图:

      映射
      单射
      满射
      双射
      逆映射
      复合映射
    • 记忆方式:

      • 满 射 \color{red}满射 R f = Y \color{red}R_f = Y Rf=Y
      • 单 射 \color{red}单射 :如果有 x 1 ≠ x 2 \color{red}x_1 \ne x_2 x1=x2 他们的像 f ( x 1 ) ≠ f ( x 2 ) \color{red}f(x_1) \ne f(x_2) f(x1)=f(x2),该映射就是单射
      • 双 射 \color{red}双射 :同时满足满射和单射,称为双射
      • 逆 映 射 \color{red}逆映射 : 如果 f f f X X X Y Y Y 单 射 \color{red}单射 ,则由定义,对每个 y ∈ R f y\in R_f yRf,有唯一 x ∈ X x \in X xX, 于是,我们可以定义一个从 R f R_f Rf X X X的新映射,记作: g : R f → X g: R_f \rarr X g:RfX
      • 复 合 映 射 \color{red} 复合映射 : 设两个映射 g : X → Y 1 g:X \rarr Y_1 g:XY1 f : Y 2 → Z f: Y_2 \rarr Z f:Y2Z,其中 Y 1 ⊂ Y 2 Y_1 \subset Y_2 Y1Y2,则由映射 g g g f f f可以定义出一个从 X X X Z Z Z对应法则,这个对应法则确认一个从 X X X Z Z Z的隐射,这个映射称为映射g和映射f构成的 复 合 映 射 \color{red}复合映射 ,记作 f ο g \color{red}f\omicron g fοg ,即: f ο g : X → Z , ( f ο g ) ( x ) = f [ g ( x ) ] , x ∈ X \color{red} f\omicron g: X \rarr Z,(f\omicron g)(x) = f[g(x)], x \in X fοg:XZ,(fοg)(x)=f[g(x)],xX

函数

  1. 函数定义

    • 定义: 设数集 D ⊆ R D\subseteq R DR, 则称映射 f : D → R f : D \rarr R f:DR, 为定义在 D D D 上的 函 数 \color{red}函数 , 记作: y = f ( x ) , x ∈ D y = f(x), x \in D y=f(x),xD

    • 相关定义:

      • 自变量: x x x称为自变量,对应映射 原 像 \color{red}原像
      • 因变量: y y y称为因变量, 对应映射 像 \color{red}像
      • 定义域: 自变量集合称为定义域,记作 D f D_f Df, D f = D D_f = D Df=D
      • 自 然 定 义 域 \color{blue}自然定义域
      • 值域: f(x)所有集合称为值域,记作 R f R_f Rf, 注意: R R R R f R_f Rf关系, R f ⊆ R \color{red}R_f \subseteq R RfR
    • 函数映射对比
      函数是映射的特例,映射是非空集合 X Y X Y XY 之间关系,函数是实数集,非空集合可以是任何东西,人,动物,植物,范围更加广泛,而函数只是相对实数集。

    • 根据定义去判断两个函数是否相同

      1. 定义相同
      2. 对应法则相同
  2. 函数特性

    函数特性
    有界性
    上界
    下界
    周期性
    最小正周期
    单调性
    奇偶性
  3. 反函数和复合函数

    • 反函数定义:设函数 f : D → f ( D ) f: D \rarr f(D) f:Df(D)是单射,则它存在逆映射 f − 1 f^{-1} f1为函数 f f f的反函数
    • 直接函数定义: 相对于反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x),原来的函数 y = f ( x ) y = f(x) y=f(x)称为 直 接 函 数 \color{red}直接函数
    • 复合函数: 设函数 y = f ( u ) y=f(u) y=f(u)的定义域是 D f D_f Df,函数 u = g ( x ) u = g(x) u=g(x)的定义域是 D g D_g Dg, 且 其 值 域 R g ⊂ D f \color{blue}且其值域R_g \subset D_f RgDf,则由下式确认的函数: y = f [ g ( x ) ] , x ∈ D g \color{red}y=f[g(x)], x\in D_g y=f[g(x)],xDg,称为由函数 u = g ( x ) u= g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u),构成的 复 合 函 数 \color{red}复合函数
    • 中间变量:变量 u u u称为中间变量
  4. 函数运算

    • 函数之间运算前提: 函 数 之 间 定 义 域 有 交 集 D f , D g , . D = D f ∩ D g ≠ ∅ \color{red}函数之间定义域有交集 D_f,D_g,.D=D_f \cap D_g \ne \varnothing Df,Dg,.D=DfDg=
    • 运算公式:
      和 ( 差 ) f ± g : ( f ± g ) ( x ) = f ( x ) ± g ( x ) \color{red}和(差) f \plusmn g : (f\plusmn g)(x) = f(x) \plusmn g(x) f±g:(f±g)(x)=f(x)±g(x)
      积 f ∗ g : ( f ∗ g ) ( x ) = f ( x ) ∗ g ( x ) \color{red}积 f * g : (f*g)(x) = f(x) *g(x) fg:(fg)(x)=f(x)g(x)
      商 f g : ( f g ) ( x ) = f ( x ) g ( x ) \color{red}商 \dfrac{f}{g} : (\dfrac{f}{g})(x) = \dfrac{f(x)}{g(x)} gf:(gf)(x)=g(x)f(x)
      //todo ,这里是不是考虑g(x) != 0
    • 一个特殊运算 f ( x ) = g ( x ) + h ( x ) , g ( x ) 是 偶 函 数 , f ( x ) 是 奇 函 数 f(x) = g(x) +h(x), g(x)是偶函数, f(x)是奇函数 f(x)=g(x)+h(x),g(x)f(x)
  5. 初等函数

    数名表达式
    幂函数 y = x w ( x ∈ R 是 常 数 ) y = x^w(x\in R是常数) y=xw(xR)
    指数函数 y = a x ( a > 0 , 且 a ≠ 1 ) y = a^x(a > 0,且a \ne 1) y=ax(a>0,a=1)
    对数函数 y = l o g a x ( a > 0 , 且 a ≠ 1 , 当 a = e , 记 作 l n x , 当 a = 10 , 记 作 l g x ) y = log_ax(a > 0,且a \ne 1,当a=e,记作lnx,当a=10,记作lgx) y=logax(a>0,a=1,a=e,lnx,a=10,lgx)
    三角函数 y = sin ⁡ x , y = cos ⁡ x , y = tan ⁡ x y = \sin x, y= \cos x, y = \tan x y=sinx,y=cosx,y=tanx
    反三角函数 y = arcsin ⁡ x , y = arccos ⁡ x , y = arctan ⁡ x y=\arcsin x, y = \arccos x, y = \arctan x y=arcsinx,y=arccosx,y=arctanx
    1. 上面5个函数称为 基 本 初 等 函 数 \color{red}基本初等函数
    2. 由基本初等函数经行 有 限 次 的 \color{blue}有限次的 四 则 运 算 \color{red}四则运算 有 限 次 的 \color{blue}有限次的 函 数 复 合 \color{red}函数复合 步骤所构成并可用的一个式子表示的函数,称为 初 等 函 数 \color{red} 初等函数

数列的极限

数列极限的定义

  • 前置知识
    • . 数列:
      如果按照某一法则,对每一个 n ∈ N n \in N nN,对应着一个确定的 实 数 x n \color{brown}实数x_n xn, 这些实数 x n x_n xn按照下标n从小到大排列得到的一个序列: x 1 , x 2 , x 3 , x 4 , ⋯   , x n , ⋯ \color{purple}x_1,x_2,x_3, x_4,\cdots,x_n,\cdots x1,x2,x3,x4,,xn,,就叫做 数 列 \color{red}数列
    • 一般项/通项:
      数列的每个数叫做数列的 项 \color{red}项 ,第 n n n项叫做数列的 一 般 项 \color{red}一般项 (或 通 项 \color{red}通项
  1. 定义:
    x n {\color{blue}x_n} xn为一数列,如果存在常熟 a \color{blue}a a,对于任意给定的正数 ε \color{red}\varepsilon ε ( 不 论 它 有 多 小 ) \color{blue}(不论它有多小) (),总存在正整数 N N N,使得当 n > N n > N n>N使,不等式 ∣ x n − a ∣ < ε \color{red}|x_n-a| < \varepsilon xna<ε都成立,那么就称常熟 a \color{blue}a a是数列 x n {x_n} xn 极 限 \color{red}极限 ,或者称数列 x n {x_n} xn收敛于 a \color{blue}a a,记作: lim ⁡ x → 0 x n = a \color{red}\lim\limits_{x\rarr0}x_n = a x0limxn=a,或者 x n → a ( a → ∞ ) \color{red}x_n\rarr a (a \rarr \infin) xna(a)
  2. 关于自己想法
    1. 要明确极限(收敛)和有界性区别,极限表达出来是一种趋势,无线趋近某个值,有界性只是表达出数列值,在某个范围内,收敛表达出来是数列趋向某个值
    2. 为什么要用这么复杂方式定义极限,总结就是用合理数学方式去表达出数列值无限趋向,可以参考
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值