YOLO(You Only Look Once)算法中的置信度(Confidence)是一个关键概念,用于评估模型对预测框内存在目标对象的信心程度以及预测框对目标对象位置的准确性。
一、置信度的定义
- 数值范围:置信度是一个介于0和1之间的数值。
- 意义:它表示模型对预测框内存在目标对象的确信程度。如果置信度接近1,表示模型非常确信预测框内包含了目标对象;如果置信度接近0,则表示模型认为预测框内可能不包含目标对象。
示例
假设我们有一个图像,其中包含了一个人和一个狗。我们使用YOLO算法对这个图像进行目标检测,算法输出了两个预测框,分别对应人和狗的位置。对于每个预测框,YOLO都会给出一个置信度分数。
1.预测框1:
在这个例子中,置信度0.95表示YOLO模型非常确信预测框1内存在一个目标对象(即人),并且预测框的位置也比较准确。
- 位置:图像中的某个区域,该区域包含了人的大部分身体。
- 置信度:0.95
- 类别概率:人 = 0.98(假设YOLO还输出了该预测框内对象属于各个类别的概率)
2.预测框2:
在这个例子中