两路归并排序
最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定
两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。
设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。
#include<iostream>
void prin(int *list,int len)
{
for(int i = 0 ;i<len;++i)
std::cout<<list[i]<<" ";
std::cout<<std::endl;
}
/*
*将数据归并
*params list:待排序的数组,low: 一个子块的
*/
void MergeSort(int *list,int low,int mid,int high)
{
int in1 = mid-low ; //第一路的数量
int in2 = high-mid+1 ;//第二路的数量
int i,j,k ;
int *left = NULL ;
int *right = NULL ;
left = new int[in1] ;//配置left的空间
right = new int[in2] ;//配置right的空间
for(i = 0 ;i<in1;++i) //将low---mid-1中的元素添加到left中
left[i] = list[low+i] ;
for(i = 0 ;i<in2;++i)//将mid--high中的元素添加到right中
right[i] = list[mid+i] ;
i = j = 0 ,k = low ;
while(i<in1&&j<in2)//将两组元素有序的合并
{
if(left[i] < right[j])
list[k++] = left[i++] ;
else
list[k++] = right[j++] ;
}
for(;i<in1;i++)//剩余left中的元素添加到数组中
list[k++] = left[i] ;
for(;j<in2 ;j++)//剩余right中的元素添加到数组中
list[k++] = right[j++] ;
delete[] left;//回收空间
delete[] right;//回收空间
}
/*
*归并排序法
*list待排序的数组,low:操作元素的位置,high:待操作元素的位置
*/
void MergeSort1(int *list,int low,int high)
{
if(low < high)
{
int mid = (low+high)/2 ; //找分割点
MergeSort1(list,low,mid) ;//划分为第一路
MergeSort1(list,mid+1,high) ;//划分为第二路
MergeSort(list,low,mid+1,high) ;//合并
}
}
int main()
{
int a[] = {8,5,2,4,9,0,1,6,7,3} ;
MergeSort1(a,0,sizeof(a)/sizeof(int)-1) ;
prin(a,10) ;
system("pause") ;
return 0 ;
}