阅读豆丁网----基于模型的混合多目标算法的研究

本文介绍了基于模型的混合多目标算法RM-MEDA的基础概念及应用背景。探讨了多目标优化中的Pareto最优解和个体支配关系,并概述了该算法在解决复杂优化问题中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接: 

基于模型的混合多目标算法的研究 - 豆丁网

http://www.docin.com/p-1088777086.html

(1) 研究背景意义

 

RM-MEDA(Regularity Model-Based Miulti-Objective Estimation of Distribution Algorithm)

(2)多目标中的相关概念

Pareto最优解:

在求解多目标函数最大化问题的时候:

就是在决策空间(x的取值范围)中存在A,B使得f(A)>=f(B) 并且存在等号不成立的情况(不然可能就是一个点了)则此时的A点就被成为Pareto最优解。

PS : Pareto Set 最优解定义下的x组成的集合             PF:Pareto Function  PS对应的目标空间的解集

i.e:  说明决策空间-------目标空间

(3)个体支配i关系

自己的理解: 现实的问题中存在的那种,多个目标,多种策略方案 ,各种不同的方案,都至少在一个目标函数上达到现阶段的最优的个体,则称它为支配

(4)算法基础:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值