陈述: 就是想看一下贝叶斯学派的陈述,从不同的学派的对比,看看有什么优缺点,然后自己思考下。
摘要:
通过设计恰当的概率代理模型和采集函数,贝叶斯优化框架只需经过少数次目标函数评估即可获得理想解。
引言:
1.首先举例子说明具体的设计类 问题
2.叙述大数据背景,优化数据均在的各种特性
3. 说明贝叶斯优化在各中不同行业的别名,以及具体的 应用场景
贝叶斯优化(Bayesian Optimization,简称 BO)是一个有效的解决方法[1].贝叶斯优化在不同的领域也称作序贯克里金优化(Sequential Kriging Optimization,简称 SKO)、基于模型的序贯优化(Sequential Model-Based Optimization,简称 SMBO)、高效全局优化(Efficient Global Optimization,简称EG