论文: 贝叶斯优化方法和应用综述(1)--------陈述设计类问题举例子,与 model-free优化计算的对比

陈述:     就是想看一下贝叶斯学派的陈述,从不同的学派的对比,看看有什么优缺点,然后自己思考下。 

摘要:

通过设计恰当的概率代理模型和采集函数,贝叶斯优化框架只需经过少数次目标函数评估即可获得理想解。

引言:

1.首先举例子说明具体的设计类 问题

2.叙述大数据背景,优化数据均在的各种特性

 

 

3. 说明贝叶斯优化在各中不同行业的别名,以及具体的 应用场景

贝叶斯优化(Bayesian Optimization,简称 BO)是一个有效的解决方法[1].贝叶斯优化在不同的领域也称作序贯克里金优化(Sequential Kriging Optimization,简称 SKO)、基于模型的序贯优化(Sequential Model-Based Optimization,简称 SMBO)、高效全局优化(Efficient Global Optimization,简称EG

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值