定积分

本文介绍了一种通过将区间划分并近似为多个矩形来计算定积分的方法,并以cos(x)函数为例展示了具体的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定积分的原始定义如下:

定积分数学公式
这个式子就是求函数f(x)在区间(a,b)的定积分,其实对于定积分来说,开、闭区间都不影响最后的积分值,也就是说,无论区间是(a,b)、[a,b)、(a,b]还是[a,b],最后的积分值都是一样的,因为从几何意义上讲,定积分就是求面积,而一条直线或线段是没有任何面积可言的。

定积分几何意义
我们回想一下定积分的原始定义,是先把区间切分成“无数”块,把每一小块近似看成一个小矩形,把每个小矩形的面积迭加起来就是最终所要的结果。所以区间分得越多,结果就越精确,但考虑到效率问题,在程序中并不是越细越好,只要结果在我们的误差范围之内就可以了。

下面就以f(x) = cos(x)为例,求其在(a,b)区间的定积分(面积),核心代码如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值