python中从终端输入两个整数m,n,打印m*n的表格

该博客介绍如何在Python中从终端接收两个整数m和n,然后生成并打印一个m*n的乘法表格。示例展示了当m=2,n=5时的输出,包括数字排列和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从终端输入两个整数m,n,打印m*n的表格,如:2,5,打印如下图

1 2 3 4 5

 6 7 8 9 10

代码:

m = int(input("请输入一个数字"))
n = int(input("请输入一个数字"))

for x in range(1,m+1):
   for y in range(1,n+1):
      print("{}".format((x-1)*n+y),end="    ")

   print()

### 回答1: 可以使用 `pip` 安装 `dddoc` 库: ``` pip install dddoc ``` 然后在 Python 代码中就可以使用 `dddoc` 了: ```python from dddoc import dddoc @dddoc def add(a: int, b: int) -> int: """这是一个简单的函数, 它接受两个整数并返回它们的.""" return a + b print(add(1, 2)) # 输出: 3 ``` 在函数定义之前加上 `@dddoc` 装饰器就可以将函数的文档字符串自动转换为 HTML 格式, 然后可以使用 `dddoc.serve()` 函数在本地启动一个简单的 HTTP 服务器来查看生成的文档. ```python import dddoc dddoc.serve() ``` 在浏览器中访问 `http://localhost:8080` 就可以看到文档了. ### 回答2: Dddddocr是一个Python库,用于实现文字识别功能。首先,需要安装ddddocr库。可以在终端中使用以下命令安装: ``` pip install ddddocr ``` 安装完成后,就可以在Python代码中使用ddddocr库了。首先,需要导入ddddocr的OCR类: ```python from ddddocr import DdddOcr ``` 接下来,创建一个OCR对象并初始化: ```python ocr = DdddOcr() ``` OCR对象初始化完成后,就可以开始使用了。我们可以使用OCR对象的`recognize`方法来进文字识别: ```python result = ocr.recognize("image.jpg") ``` 上述代码中的"image.jpg"是要进识别的图片文件路径,可以将其替换为自己的图片路径。识别完成后,OCR对象会返回一个字典类型的结果,包含识别的文字内容坐标信息。 可以通过以下代码来获取识别的文字内容: ```python text = result['text'] ``` 通过以下代码来获取识别的文字坐标信息: ```python boxes = result['boxes'] ``` 通过这些基本的使用步骤,我们就可以在Python中使用ddddocr库进文字识别了。注意,需要确保安装并导入了必要的依赖库,并且图片路径需要正确指定。 ### 回答3: ddddocr是一款用于文字识别的Python包,它可以帮助我们将图片中的文字提取出来并进识别。以下是在Python中使用ddddocr的步骤: 1. 安装ddddocr包:首先,我们需要使用pip命令来安装ddddocr包。在命令中运以下命令: ``` pip install ddddocr ``` 2. 导入ddddocr:在Python脚本中,我们需要先导入ddddocr库,以便使用其中的功能。 ```python import ddddocr ``` 3. 加载模型:ddddocr使用预训练模型进文字识别,因此我们需要加载相应的模型。以下是加载通用OCR模型的示例代码: ```python ocr = ddddocr.DdddOcr() ``` 4. 识别图片中的文字:使用加载好的模型,我们可以对图片进文字识别。以下是一个简单的示例: ```python img = 'path/to/image.jpg' result = ocr.recognize(img) for line in result: print(line['text']) ``` 这样,我们就可以使用ddddocr包对图片中的文字进识别了。当然,在实际使用中,我们可以根据需求进更多的配置,例如指定特定的模型、识别参数等。ddddocr还支持中英文混合识别、表格识别等高级功能,可以根据具体需求调用相应的方法。 最后,值得一提的是,要注意选择高质量的图像作为输入,以获得更准确的识别结果。此外,ddddocr可用于商业项目,但请注意遵守相关法律法规。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值