题目连接:hdu1754 I Hate It
本题考查的是线段树的基本操作,属于线段树的单点更新。如果不懂线段树的基本操作请移步:这里
这一题是我学完线段树后的第一道线段树的题,可以说是十分的基础,我刚学完就可以一遍AC。大家只要对线段树的基本操作有所了解,应该是可以轻松AC的。
代码如下:
// 有效结点: 200000
// 深度达到:(lg200000)/(lg2) +1 约等于 19
// 其完全二叉树 总结点 个数为: (1<<19) - 1 个
#include <stdio.h>
#define MAXN 1<<19
typedef struct
{
int value; //区间最值
int left,right; //区间范围
}Tree;
Tree node[MAXN];
int father[MAXN]; //记录叶子对应结构体的 下标
//线段树的建立
void build(int i, int left, int right){ //i为结构体数组的下标
node[i].left = left; //为节点成员初始化
node[i].right = right;
node[i].value = 0;
if(left == right){ //当线段树的节点为叶子时,结束递归
father[left] = i;//将叶子在结构体数组的下标记录,以便更新是可以自下而上
return ;
}
//现在分别建立该节点的左右孩子
build(2*i,left,(left+right)/2);
build(2*i+1,1+(left+right)/2,right);
return ;
}
//自上往下的更新,n_i 如上图所意
void Updata(int n_i){
if(n_i == 1) return ; //找到了根节点,结束递归
int fa = n_i/2; //找到了父节点
int a = node[2*fa].value; //该父节点的左儿子的值
int b = node[2*fa + 1].value;//该父节点的右儿子的值
node[fa].value = a>b?a:b; //更新节点数据
Updata(fa); //递归更新
return ;
}
int Max;
//i为结构体下标,通常我都从根节点开始查询,所以,通常我们初始化时为1
//查询区间为 [ left, right ]
void Query(int k,int left,int right){
//当查询区间完全重合时
if(node[k].left == left && node[k].right == right){
Max = Max > node[k].value ? Max : node[k].value;
return ;
}
//对左子树进行操作
if(left <= node[2*k].right){ //如果与左区间有交集
if(right <= node[2*k].right) //如果完全包含于左区间,则查询范围不变
Query(2*k,left,right);
else//否则这将区间查分开,先查询左边的
Query(2*k,left,node[2*k].right);
}
//对右子树进行操作
if(right >= node[2*k+1].left){ //如果与右区间有交集
if(left >= node[2*k+1].left) //如果完全包含于右区间,则查询范围不变
Query(2*k+1,left,right);
else//否则这将区间查分开,先查询右边的
Query(2*k+1,node[2*k+1].left,right);
}
return ;
}
int main(){
int n,t,g,i;
while(scanf("%d%d",&n,&t)!=EOF){
build(1,1,n);
for(i = 1; i <= n; i++){
scanf("%d",&g);
node[father[i]].value = g;
Updata(father[i]);
}
while(t--){
char o[3];
int a,b;
scanf("%s %d %d",o,&a,&b);
if(o[0] == 'Q'){
Max = 0;
Query(1,a,b);
printf("%d\n",Max);
}else{
node[father[a]].value = b;
Updata(father[a]);
}
}
}
return 0;
}
(如有错误,欢迎指正,转载请注明出处)