有好几种算法可以生成全排列,比如自底向上插入生成全排列、Johnson-Trotter算法生成、字典序生成等等。
我想到用字典序生成全排列的一个算法。
字典序排列就是按照字典a-z,1-9的顺序给出字符串的顺序全排列,例如abc的全排列就是从abc一直排到cba。那么给定一个字符串,怎么找出恰好大于该字符串的下一个排列呢?
我们考虑如下的步骤:
1、假设字符串为p1p2….pn,我们从后往前寻找第一个符合pj<pj+1条件的字符pj,也就是说,p1p2…pj-1pjpj+1…pn中pj<pj+1并且pj+1>pj+2>…pn。
2、再次从后往前寻找第一个大于pj的字符pk,也就是说,p1p2pj-1pjpj+1…pk-1pkpk+1…pn中从后往前pk>pj并且pk+1,…pn<pj,可以看出pk也是比pj大的数中最小的一个,因为最差情况下k=j+1。
3、交换pj和pk,这样在p1p2…pj前j个字符变大了,pj放到原来pk的位置上同样符合pj+1>…pk-1>pj>pk+1…>pn。
4、为了得到恰好大于该字符串的下一个排列,我们看到从j+1之后的字符串是降序排列的,我们将其翻转,就可以得到想要的结果了。
那么什么时候整个过程结束呢?当再也找不到符合条件的j时,说明当前的字符串已经是逆序的了,也就是字典序最大。
例如839647521是数字1~9的一个排列。从它生成下一个排列的步骤如下:
自右至左找出排列中第一个比右边数字小的数字4 839647521
在该数字后的数字中找出比4大的数中最小的一个5 839647521
将5与4交换 839657421
将7421倒转 839651247
所以839647521的下一个排列是839651247。
代码如下:
#include "stdio.h"
#include "string.h"
#include <iostream>
using namespace std;
void Permutation(char* str)
{
if(!str)
return;
int len=(int)strlen(str);
while(true)
{
cout <<str<<endl;
int j=len-2,k=len-1;
while(j>=0 && str[j]>str[j+1])
--j;
if(j<0)
break;
while(str[k]<str[j])
--k;
char temp=str[k];
str[k]=str[j];
str[j]=temp;
int a,b;
for(a=j+1,b=len-1;a<b;++a,--b)
{
temp=str[a];
str[a]=str[b];
str[b]=temp;
}
}
}
void Test(char* pStr)
{
if(pStr == NULL)
printf("Test for NULL begins:\n");
else
printf("Test for %s begins:\n", pStr);
Permutation(pStr);
printf("\n");
}
int main()
{
Test(NULL);
char string1[] = "";
Test(string1);
char string2[] = "a";
Test(string2);
char string3[] = "ab";
Test(string3);
char string4[] = "abc";
Test(string4);
return 0;
}