初探BP神经网络工具箱

本文介绍了MATLAB神经网络工具箱中用于创建、训练和显示BP神经网络的相关函数,包括newcf、newff、logsig、tansig、learngd、learngdm等,并探讨了它们的使用方法和作用。
摘要由CSDN通过智能技术生成

      初探BP神经网络工具箱  

      BP神经网络(Back Propagation)是一种按误差逆传播算法的多层前馈网络,目前在实际应用中8成到9成的神经网络模型采用的是BP网络(或者它的变种)。中间层可以为单隐层或者多隐层。由最后一个隐层传递到输出层。向输出层向外界输出信息处理结果。当实际输出与期望值不相符时,我们就进入误差的反向传播(Back Propagation)阶段。误差通过输出层向隐层和输入层反向传回去,按梯度下降的方式修改各层的权值。不断周而复始这个循环(这也是神经网络学习训练的过程),直到输出层与期望输出的误差减少到目标范围内(比如0.01),或者循环次数达到了预设值(比如500),则参数学习过程停止。这也就是BP神经网络的大致工作原理了。

      众所周知,matlab是一款很优秀的处理神经网络的数学软件,它里面自带的一些库和包可以帮助我们很方便的创建神经网络。在Matlab神经网络工具箱中提供了大量的与BP神经网络相关的函数。本文我就介绍一下BP神经网络相关的一些函数的操作和使用。

    一. 创建函数

        创建函数有2种方式,一种是newcf, 另一种是newff。我们先来看看newcf。

     1)newcf

       newcf是用来创建级联前向BP网络函数的,何谓级联呢?在这个例子里的解释很简单,简单地说,就是input连接着第一个隐层又同时连接着第二个隐藏,这就是级联。我这么说可能有点抽象,待会我会截张图大家就能看个明白。

net = newcf ( inputRange, [lay1, lay2,...,layN], {layTran1, layTran2,...,layTranN}, BPTrain, BPLearn, util)

        以上便是newcf调用的格式,

        第一个参数inputRange是个矩阵,代表没组输入的最大值和最小值

        第二个参数是代表每个隐层的长度,一个N个隐层

        第三个参数代表各层的传递函数,默认是tansig

        第四个参数代

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值