二分法求解方程的近似解(sicily 1017)

本文介绍了如何运用二分法来寻找一元多次方程的近似解。通常,当函数单调递增时,可以通过不断缩小范围来逼近目标解。在 sicily 1017 题目中,需要求解方程并确保结果精确到小数点后6位。
摘要由CSDN通过智能技术生成

    求解一元多次方程的解,我们可以利用二分法来求解近似解,一般来说函数是递增的。然后就通过二分法不断逼近目标值。一般题目会给定一个误差范围,比如精确到小数点后6位,就算是OK的了。

    sicily上有一道类似的题目 http://soj.sysu.edu.cn/1017

Sample Input

2   
1 100.00
3 100.00
4 210.00 3 1 100.00 2 50.00 5 200.00 7 358.41
-1

Sample Output

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值