朴素贝叶斯分类器原理与java实现

本文介绍了朴素贝叶斯分类器的工作原理,包括核心公式和假设。通过训练数据,朴素贝叶斯算法计算特征在不同类别中出现的概率,以此来预测测试数据的类别。在实际应用中,尽管假设特征间相互独立,但实验证明这种简化对结果影响较小。源代码在Bayes.java文件中提供。
摘要由CSDN通过智能技术生成

朴素贝叶斯分类器是一种常用的分类算法,该算法利用训练数据集合的特征、类别以及测试数据的特征来得到测试数据的类别。

下面是该分类器原理中最重要的公式:

 P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

在这个公式中,C表示类别,F1,F2,F3...Fn是n个特征,这个公式的意思为:在满足一组特征的条件下分到类别C的概率=在满足类别C的条件下一组特征同时出现的概率*类别C出现的概率/一组特征同时出现的概率。

由于公式中分母P(F1F2...Fn)是一个定值,朴素贝叶斯分类器算法只需要计算P(F1F2...Fn|C)P(C),用于作为判断属于某一类别概率的指标。这里我们假设各个特征之间相互独立,即使不独立我们也认为是独立的,因为实验证明这样的计算一般对结果影响很小。所以有:P(F1F2...Fn|C)P(C) = P(F1|C)P(F2|C) ... P(Fn|C)P(C),在给出的训练数据集合中,P(Fi|C)为一个特征的值在该类出现的次数/该类训练数据的总数,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值