题意:给定一个字符串,重复的子串可以用简写的方法表示。求最短可以表示成多长。
大白书上有原题,应该在动态规划一章。
HASH预处理出每个区间的串的信息(一定要记住每个字符的信息不能是0!!!!),dp[i][j]记录四个信息,一个是区间内最小循环串的长度,一个是该区间的最小长度,一个是循环次数,还有一个信息是这个这个区间的循环串是什么。
然后就是区间合并了,先看两个相邻区间的循环串是不是一样的。一样的直接合并,不一样的循环次数回一,但是串的长度可以直接赋值为两者之和,并且串的信息要重新截取更新一次。
#include <algorithm>
#include <iostream>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
using namespace std;
#define MAXN 510
#define ULL unsigned long long
char s[MAXN];
ULL w[MAXN], w2[MAXN], HASH[MAXN], HASH2[MAXN];
struct Node
{
int l, k, c;
ULL str, str2;
}dp[MAXN][MAXN];
int getLen(int k) {
int ret = 0;
while(k) k /= 10, ret++;
return ret;
}
Node& Merge(int i, int k, int j) {
Node ret;
ULL a = dp[i][k].str * HASH[k + 1];
ULL b = dp[k + 1][j].str * HASH[i];
if(a == b) {
ret.k = dp[i][k].k + dp[k + 1][j].k;
ret.c = dp[i][k].c;
ret.l = ret.c + getLen(ret.k);
if(ret.c > 1) ret.l += 2;
ret.str = dp[i][k].str;
} else {
ret.k = 1;
ret.l = ret.c = dp[i][k].l + dp[k + 1][j].l;
ret.str = w[j] - w[i - 1];
}
return ret;
}
int main() {
HASH[1] = 131;
for(int i = 2; i < MAXN; i++)
HASH[i] = HASH[i - 1] * 131;
int cas = 0;
while(scanf("%s", s + 1) && s[1] != '0') {
printf("Case %d: ", ++cas);
int len = strlen(s + 1);
w[0] = 0;
for(int i = 1; i <= len; i++)
w[i] = HASH[i] * (s[i] - 'a' + 1) + w[i - 1];
for(int i = 1; i <= len; i++)
for(int j = i; j <= len; j++) {
dp[i][j].l = dp[i][j].c = (j - i + 1);
dp[i][j].k = 1;
dp[i][j].str = w[j] - w[i - 1];
}
for(int i = 1; i <= len; i++) {
for(int l = 1; l <= len / 2; l++) {
int k = 1;
ULL st = w[l + i - 1] - w[i - 1];
while((k + 1) * l + i - 1 <= len &&
st * HASH[l] == (w[(k + 1) * l + i - 1] - w[k * l + i - 1])) {
st = (w[(k + 1) * l + i - 1] - w[k * l + i - 1]);
k++;
}
int sl = l + getLen(k);
if(l > 1) sl += 2;
if(sl < dp[i][k * l + i - 1].l) {
dp[i][k * l + i - 1].l = sl;
dp[i][k * l + i - 1].k = k;
dp[i][k * l + i - 1].c = l;
dp[i][k * l + i - 1].str = w[l + i - 1] - w[i - 1];
}
}
}
for(int l = 1; l <= len; l++)
for(int i = 1; i + l <= len; i++)
for(int k = i; k < i + l; k++) {
Node tmp = Merge(i, k, i + l);
if(tmp.l < dp[i][i + l].l || tmp.l == dp[i][i + l].l && tmp.k > dp[i][i + l].k)
dp[i][i + l] = tmp;
}
printf("%d\n", dp[1][len].l);
}
return 0;
}