KNN 在手写识别中的应用(Java 实现)

本文详细介绍了K-邻近(KNN)算法,包括其工作原理、特点和流程,并通过一个Java实现的手写数字识别实例展示了KNN的应用。利用KNN算法,对未知类别的手写数字进行识别,通过计算与样本数据的距离进行分类。
摘要由CSDN通过智能技术生成

这篇博文主要介绍了一种基于机器学习的分类方法,K-邻近(KNN),并且使用这种方法来完成了一个简单的手写数字识别系统。

KNN 概述

什么是 KNN

KNN(K–nearest-neighbor),即 K-邻近算法, 所谓 K 邻近,就是 K 个最近邻居的意思,说的是每个样本都可以用与它最接近的K 个邻居来进行表示。

工作原理

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所述分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签,一般来讲,我们只取样本集数据中前 K 个最相似的数据,最后在这 K 个数据中统计处出现次数最多的分类,最为新数据的分类。

算法特点

  • 优点:精度高、对异常值不敏感、无数据输入假定

  • 缺点:计算复杂度高、空间复杂度高

  • 适用数据范围:数值型和标称型

算法流程

对未知类别属性的数据集中的每个店依次执行以下操作:

  • 计算已知类别数据集中的点与当前点之间的距离

  • 按照距离递增次序排列

  • 选取与当前点距离最小的 K 个点

  • 确定前 K 个点所在类别的出现频率

  • 返回前 K 个点出现频率最高的类别作为当前点的预测分类

对于距离的计算,我们采用欧氏距离公式:

image

KNN的应用实例 - 手写识别(Java)

简述

我们所做的手写识别是来识别简单的手写数字,数据形式是如下图的文本文件:

image

我们有一些样本数据,然后用一些测试数据来进行算法的测试。

对于算法源码以及数据样本,详情见:https://github.com/luoyhang003/machine-learning-in-java/tree/master/k-Nearest-Neighbour

具体实现

代码写的比较烂,只是实现了 KNN 的算法,并没有优化,敬请见谅!

  • 首先我们需要将这些文本转换为向量,可以存储于数组中
    public static int[] data2Vec(String fileName){
        int arr[] = new int[32 * 32];

        try{
            FileReader reader = new FileReader(fileName);
            BufferedReader buffer = new BufferedReader(reader);

            for(int index = 0; index < 32; index++){
                String str 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值