对抗样本与生成式对抗网络

本文介绍了对抗样本的概念,源于深度学习的脆弱性问题,即使微小的干扰也能使模型产生错误的高置信度输出。生成式对抗网络(GAN)由生成器和辨别器组成,通过博弈过程实现自我学习和监督学习。这种无须预先设计成本函数的学习方式为无监督学习提供了新的视角。
摘要由CSDN通过智能技术生成


最近一个月,人工智能领域听的最多的名词之一,莫过于对抗样本和对抗性网络,从最开始Yann LeCun在Quora上直播时表示生成对抗性网络近期人工智能最值得期待的算法之一,到近日生成对抗性网络的发明者Ian Goodfellow在Quora上直播讲述自己的学习经历和研究,而对比起LeCun, Ian Goodfellow的知名度可能没有那么高,但是Goodfellow是Yoshua Bengio的学生,前Google科学家,现在被Elon Musk招到OpenAI做科学家。


那到底什么是对抗样本?

深度学习对抗样本(Adversarial Examples)的概念最早是Christian Szegedy 等人在ICLR2014发表的论文中提出来的,即在数据集中通过故意添加细微的干扰所形成输入样本,受干扰之后的输入导致模型以高置信度给出了一个错误的输出。在他们的论文中,他们发现包括卷积神经网络(Convolutional Neural Network, CNN)在内的深度学习模型对于对抗样本都具有极高的脆弱性。他们的研究提到,很多情况下,在训练集的不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值