2.1 引言
1、大数据处理需求主要集中在如下几点:
如何收集类型如此繁多的数据?
如何存储体量如此巨大的数据?
如何在大数据中找出有价值的信息?
如何保证大数据的分析速度以及有效展示大数据的分析结果?
2.2 大数据基础
2.2.1 大数据的定义和提点
所谓大数据就是现有的一般技术难以管理的大量数据的集合。
4V特性:volume(大量)、velocity(高速)、variety(多样)、value(低价值密度)
2.2.2 大数据关键技术
大数据技术是指伴随着大数据的采集、存储、分析和应用的相关技术,是一系列使用非传统工具来对海量结构化和非结构化数据进行处理,从而获得分析和预测结果的一系列数据处理和分析技术。
大规模数据,在容量上至少大于1TB的数据集。
数据采集与预处理
数据存储与管理
数据处理与分析
数据可视化呈现
2.2.3 大数据计算模式
批处理计算:大规模数据的批量处理
流式计算:流式数据的实时计算
交互式查询计算:大规模数据的存储管理和查询分析
图计算:大规模图结构数据的处理
2.3 大数据应用场景
在将大数据应用到某种应用场景之前,需要结合行业特点,从时间、空间、人员、行为等方面剖析具体要解决的问题,分析可以采用哪些大数据应用方法(技术原理、产品和实现方法),以及通过大数据技术能取得的成就。
2.4 大数据主流平台框架
2.4.1 Hadoop
hadoop将一个