第二章 大数据平台和技术

本文介绍了大数据的基础,包括4V特性、关键技术与计算模式。详细阐述了Hadoop、Spark和Storm的大数据处理框架,以及在网络安全态势感知中的应用。重点讨论了数据采集与预处理,如传感器、网络爬虫、日志收集系统和数据抽取工具,同时涉及大数据存储与管理,如分布式文件系统、数据库和协调系统。此外,还提及了资源调度管理和大数据分析与可视化技术的重要性。
摘要由CSDN通过智能技术生成

2.1 引言

1、大数据处理需求主要集中在如下几点:

如何收集类型如此繁多的数据?

如何存储体量如此巨大的数据?

如何在大数据中找出有价值的信息?

如何保证大数据的分析速度以及有效展示大数据的分析结果?

2.2 大数据基础

2.2.1 大数据的定义和提点

所谓大数据就是现有的一般技术难以管理的大量数据的集合。

4V特性:volume(大量)、velocity(高速)、variety(多样)、value(低价值密度)

2.2.2 大数据关键技术

大数据技术是指伴随着大数据的采集、存储、分析和应用的相关技术,是一系列使用非传统工具来对海量结构化和非结构化数据进行处理,从而获得分析和预测结果的一系列数据处理和分析技术。

大规模数据,在容量上至少大于1TB的数据集。

数据采集与预处理

数据存储与管理

数据处理与分析

数据可视化呈现

2.2.3 大数据计算模式

批处理计算:大规模数据的批量处理

流式计算:流式数据的实时计算

交互式查询计算:大规模数据的存储管理和查询分析

图计算:大规模图结构数据的处理

2.3 大数据应用场景

在将大数据应用到某种应用场景之前,需要结合行业特点,从时间、空间、人员、行为等方面剖析具体要解决的问题,分析可以采用哪些大数据应用方法(技术原理、产品和实现方法),以及通过大数据技术能取得的成就。

2.4 大数据主流平台框架

2.4.1 Hadoop

hadoop将一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值