堆与堆排序

堆排序

参考自:链接: link

1 概念

1) 堆的基本概念
堆 是一种特殊的树,满足以下条件即为堆:

  • 首先堆是一个完全二叉树
  • 堆中每一个节点的值都必须大于等于(或小于等于)其左右子节点的值
  • 每个节点都大于等于其子树节点的堆叫“大顶堆“或大根堆,根是最大值
  • 每个节点都小于等于其子树节点的堆叫“小顶堆“或小根堆,根是最小值

因为堆的要求不像二叉搜索树那么严格。他只要求某个节点的子节点大于或小于该节点,因此同一组数据,可以构建多种不同形态的堆:
在这里插入图片描述
2)堆的表示
堆是完全二叉树,大部分时候都是使用数组来存储堆
在这里插入图片描述
规律(根节点是0号)

  • i 结点的父结点 par = floor((i-1)/2) 「向下取整」

  • i 结点的左子结点 2 * i +1

  • i 结点的右子结点 2 * i + 2

因为堆是完全二叉树,所以说,数组中的元素的父节点、孩子节点都是可以用公式算出来的!(层序遍历下)

2 堆的操作

堆的操作主要有两种:插入、删除。。(priority_queue也正是只提供了这两种方法)
在这里插入图片描述

不管是插入还是删除后都有可能不再满足堆的定义即:

  • 堆是一颗完全二叉树

  • 堆中每个节点都必须大于等于(或小于等于)其左右子节点

在插入或删除操作后需要进行调整,让其重新满足堆的特性,这个调整的过程叫做堆化(heapify)

1) 两种堆化方式

从下往上(上浮):当前元素不断向上和父节点比较大小:

  • 大顶堆:当前元素比父节点大,交换,让大的节点上去
  • 小顶堆:当前元素比父节点小,交换,让小的节点上去

在这里插入图片描述

从上往下(下沉):当前元素不断向下和两个孩子节点比较大小

  • 大顶堆:当前元素与子节点中较大的比,比子节点小交换,让小的节点下去
  • 小顶堆:当前元素与子节点中较小的比,比子节点大交换,让大的节点下去

在这里插入图片描述当根节点是0号的时候,下沉和上浮代码是:


//模拟priority_queue
class Heap
{
private:
    vector<int> vec;
    int capacity;
    int count;


    void swapNode(int i,int j)
    {
        swap(vec[i],vec[j]);
    }

    //小根堆的上浮操作---在堆中将index节点上浮
    void siftup_minheap(int index)
    {
        int parentNode=(index-1)/2;
        while(parentNode>=0)
        {
            if(vec[parentNode]<vec[index])
                break;//父节点比这个节点小,则停止上滤
            
            swapNode(index,parentNode);
            index=parentNode;
            parentNode=(index-1)/2;

        }
    }


    //小根堆的下沉操作--下沉的范围是[index,n),一般是vec.size()
    void siftdown_minheap(int index,int n)
    {
        int i=index;
        int j=2*i+1;//index节点的左儿子
        while(j<n)
        {
            if(j+1<n && vec[j+1]<vec[j]) j++;//j是左儿子和右儿子。较小的那个的下标
            if(vec[i]<vec[j]) break;//如果 当前节点比两个孩子都要小,那么停止下沉
            swapNode(i,j);
            i=j;
            j=2*i+1;
        }
    }



};

2) 插入

插入的过程是从下往上的堆化:在堆的尾部插入,以满足完全二叉树条件,再进行堆化。
在这里插入图片描述

过程:

  • 让新插入的节点与父节点对比大小。如果新插入的节点大于父节点,我们就互换两个节点。一直重复这个过程,直到满足堆的条件。

在这里插入图片描述

java代码如下:

 void del()
    {
        int n=vec.size();
        swapNode(0,n-1);

        vec.pop_back();

        siftdown_minheap(0,vec.size());

    }

3) 删除堆顶元素

堆的删除操作,往往是删除堆顶的元素
删除非堆顶元素的效率不高,意义通常也不大。

删除堆顶元素,过程是从上往下的堆化。

堆顶元素存储的就是堆中数据的最大值或者最小值。删除了堆顶元素后,可以把最后一个元素移到根节点的位置,满足完全二叉树的条件,再进行堆化
在这里插入图片描述

最后一个节点放到堆顶,在子节点中找出较大(大顶堆)的那个对比。小于子节点时,互换两个节点,并且重复进行这个过程。这就是从上往下的堆化方法。
在这里插入图片描述
java代码如下:

//删除顶部元素
removeMax() {
  if (count == 0) return -1; // 堆中没有数据
  a[1] = a[count];//最后一个元素移到根节点的位置
  --count;
  sink(a, count, 1); 
}
// 自上往下堆化
sink(a, n, i) { 
  while (true) {
    const maxPos = i;
    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1; // 需要在两个子节点中找大的出来
    if (maxPos == i) break;
    swap(a, i, maxPos);
    i = maxPos;
  }
}

3) 堆化时间复杂度
堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。

4)插入和删除时间复杂度

插入数据和删除堆顶元素的主要逻辑就是堆化,所以时间复杂度都是 O(logn)。

3 堆排序

堆排序步骤

  • “大顶堆”用于升序排列

  • “小顶堆”用于降序排列

实现堆排序可分解为两个步骤,建堆和排序

1)建堆

数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作

方式一(从前往后处理数组)

从前往后依次处理数组元素,数据插入堆中时,都用从下往上堆化。直到最后一个元素处理完成。

在这里插入图片描述
假设,起初堆中只包含一个数据,就是index=1 的元素6

  • Step1:6这个元素,只有一个,不需要比较;
  • Step2:调用前面讲的插入操作,将index=2的元素8插入堆中。
    堆化:这里8大于堆顶6,堆化后8与6交换位置
  • Step3:将index=3的元素3插入堆中。
    堆化:这里3小于index 3/2=1的位置上的元素8,不需要交换;
  • Step4:将index=4的元素10插入堆中。
    堆化:这里10大于index 4/2=2上的元素6,交换,再与index=2/2=1上的8比,比8大,交换
  • Step5:……
  • Step6:将index从 2 到 n 的数据依次插入到堆中,完成建堆。

除了第一个节点,都需要堆化。即对n-1个节点进行了堆化。时间复杂度是NlogN。(需要复杂的公式推导,记住就行了)

这个过程,虽然是原地操作,往往,我们会有下面这种情况:
给定一个数组,遍历这个数组,往一个priority_queue中插入元素。
这个过程,本质上就是方式一的方法,也就是在原地在数组中从前往后调整,所以时间复杂度也是NlogN。(往prirotity——queue中插数据,本质上就是差插到pri_queue底部的那个数组的末尾,然后上浮。)

方式二(从后往前处理数组)

从后往前处理数组,使用从上往下堆化,直到第一个元素处理完成。

对于完全二叉树来说,叶子节点:

  • 根节点是1开始编号的时候,下标从 n/2+1 到 n 的都是叶子节点。所以第一个非叶子节点为n/2
  • 根节点是0开始编号的时候,第一个非叶子节点是最后一个节点的父节点,也就是(n-1-1)/2=(n-2)/2

在这里插入图片描述

叶子节点往下堆化只能自己跟自己比较,所以从最后一个非叶子节点index=4开始堆化

  • Step1:index=4的元素8小于子节点16,交换位置
  • Step2:index=3的元素19小于子节点20,交换位置
  • Step3:index=2的元素5小于子节点16,交换位置,再次小于子节点13,交换位置
  • Step4:index=1的元素7小于子节点20,交换位置,再次小于子节点19,交换位置。完成建堆。

下标从 n/2 开始到 1 的节点进行堆化。

结论:

  • 对比方式一的n-1个节点堆化,采用从后往前处理数组的方式较好

时间复杂度:因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始,每个节点堆化的过程中,需要比较和交换的节点个数是与它的高度k成正比的。
在这里插入图片描述

建堆的时间复杂度是 O(n)

2)排序
排序是建立在已经构建一个堆的基础上的。数组中的第一个元素就是堆顶,也就是最大或最小的元素。我们可以利用删除堆顶元素的思路来进行堆排序。
在这里插入图片描述

  • Step1:将堆顶元素9与第n个元素(index=5)交换,此时最大值位于5(数组最后位),下标为5的元素位于堆顶
    堆化:5小于子节点中较大的6,与6交换位置

  • Step2: 再取此时的堆顶元素6 与n-1个元素(index=4)交换
    堆化:1小于子节点中较大的5,与5交换位置

  • Step3: 再取堆顶元素5 与n-2个元素(index=3)交换
    堆化:3大于子节点1,不交换

  • Step4: 再取堆顶元素3 与n-3个元素(index=2)交换

  • Step5: 再取堆顶元素1,发现没有可比较的子节点了,堆排序结束

排序过程中需要对n个元素进行堆化,堆化的时间复杂度是O(logn),所以排序过程的时间复杂度是 O(nlogn)

排序结果:

  • 大顶堆:升序数组
  • 小顶堆:降序数组

堆排序复杂度
时间复杂度:堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)

空间复杂度:排序不需要占用额外的空间,只需要交换元素的需要一个临时变量,所以堆排序的空间复杂度为O(1)。

4堆应用

1)优先级队列就是使用的堆封装的
2)其他应用见参考:https://juejin.cn/post/7007610680891146271

5 代码

#include<vector>
#include<iostream>
using namespace std;

//模拟priority_queue
class Heap
{
public:
    vector<int> vec;
    int capacity;
    int count;


    void swapNode(int i,int j)
    {
        swap(vec[i],vec[j]);
    }

    //小根堆的上浮操作---在堆中将index节点上浮
    void siftup_minheap(int index)
    {
        if(index==0) return;
        cout<<"..."<<endl;
        int parentNode=(index-1)/2;
        while(parentNode>=0)
        {
            
            if(vec[parentNode]<vec[index])
                break;//父节点比这个节点小,则停止上滤
            
            swapNode(index,parentNode);
            index=parentNode;
            if(index==0) break;
            parentNode=(index-1)/2;

        }
    }


    //小根堆的下沉操作--下沉的范围是[index,n),一般是vec.size()
    void siftdown_minheap(int index,int n)
    {
        int i=index;
        int j=2*i+1;//index节点的左儿子
        while(j<n)
        {
            if(j+1<n && vec[j+1]<vec[j]) j++;//j是左儿子和右儿子。较小的那个的下标
            if(vec[i]<vec[j]) break;//如果 当前节点比两个孩子都要小,那么停止下沉
            swapNode(i,j);
            i=j;
            j=2*i+1;
        }
    }

    //小根堆的插入操作
    void insert(int num)
    {
        vec.push_back(num);
        int index=vec.size();
        siftup_minheap(index-1);
    }

    //小根堆的删除堆顶元素操作--先将根节点和末尾元素互换,然后popback,然后从根节点开始下沉
    void del()
    {
        int n=vec.size();
        swapNode(0,n-1);

        vec.pop_back();

        siftdown_minheap(0,vec.size());

    }

    //原地建堆的操作--复杂度是NlogN
    void  buildHeap_1()
    {
        for(int i=0;i<vec.size();i++)
        {
            siftup_minheap(i);
        }
    }



    //时间复杂度是N的,建堆方法--从第一个非叶子节点,往前遍历,并进行下沉操作
    void buildHeap()
    {
        int n=vec.size();
        for(int i=(n-2)/2;i>=0;i--)
        {
            siftdown_minheap(i,vec.size());
        }
    }


    int top()
    {
        int temp=vec[0];
        return temp;
    }


public:

    Heap(vector<int>& vec_)
    {
        vec=vec_;
    }

};

int main()
{
    vector<int> vec{9,4,7,1,5,3};
    Heap heap_(vec);
    heap_.buildHeap();

    while(heap_.vec.size()>0)
    {
        cout<<heap_.top()<<endl;
        heap_.del();
    }

    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值