斯托克斯第一问题
模型建立
假设有一块无限大的平板浸没在无界的静止流体中,突然以速度 U U U沿其自身所在的平面运动起来,并且一直保持速度的大小和方向不变。请求解平板起动后流体运动随时间的变化过程。
如图所示建立直角坐标系:
考虑NS方程:
ρ ∂ V ⃗ ∂ t + ρ V ⃗ ⋅ ∇ V ⃗ = − ∇ p + ρ g ⃗ + μ ∇ 2 V ⃗ \rho \frac{\partial \vec{V}}{\partial t}+\rho \vec{V} \cdot \nabla \vec{V}=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{V} ρ∂t∂V+ρV⋅∇V=−∇p+ρg+μ∇2V
我们假定 U U U沿着 z z z方向,也就是说, U U U只在 z z z方向的分量不为零。不难想到,板是拖着流体运动的,所以流体的速度 V ⃗ \vec V V也只有沿 z z z轴方向的分量,不妨设为 u u u。所以我们只考查NS方程沿着 z z z方向的分量即可,即:
ρ ( ∂ u ∂ t + u ∂ u ∂ z ) = − ∂ P ∂ z + ρ g z + μ ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) ρ(∂t∂u+u∂z∂u)=−∂z∂P+ρgz+μ(∂x2∂2u+∂y2∂2u+∂z2∂2u)
考虑以下几点,对方程进行简化:
- 因为板是无限大的,我们假定在相同的 y z yz yz平面内的速度是恒定的。故 ∂ u / ∂ z = 0 , ∂ u / ∂ y = 0 {\partial u}/{\partial z}=0,{\partial u}/{\partial y}=0 ∂u/∂z=0,∂u/∂y=0。
- 同一水平高度,压强为0,所以没有压力项。
- 没有外力项。
所以根据这几点,上述方程可以约化为:
ρ ∂ u ∂ t = μ ∂ 2 u ∂ x 2 \rho\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}} ρ∂t∂u=μ∂x2∂2u
关于边界条件的提法,我们知道板接触面速度为 U U U,离板无穷远处的速度我们可以假设为0。因为流体刚开始是静止的,所以初值为0。故若令 a = μ / ρ a = \mu/\rho a=μ/ρ,整个问题可描述为:
∂ u ∂ t − a ∂ 2 u ∂ x 2 = 0 u ( x , 0 ) = 0 , x ≥ 0 u ( 0 , t ) = U , u ( + ∞ , t ) = 0 , t > 0 \begin{array}{l}{\frac{\partial u}{\partial t}-a \frac{\partial^{2} u}{\partial x^{2}}=0} \\ {u(x, 0)=0, x \geq 0} \\ {u(0, t)=U, u(+\infty, t)=0, t>0}\end{array} ∂t∂u−a∂x2∂2u=0u(x,0)=0,x≥0u(0,t)=U,u(+∞,t)=0,t>0
模型求解
考虑拉普拉斯变换:
u ^ ( x , s ) = ∫ 0 ∞ u ( x , t ) e − s t d t \hat u(x, s)=\int_{0}^{\infty} u(x, t) \mathrm{e}^{-s t} \mathrm{d} t u^(x,s)=∫0∞u(x,t)e−stdt
对方程做拉普拉斯变换,可得:
s u ^ ( x , s ) = a d 2 u ^ ( x , s ) d x 2 s \hat u(x, s)=a \frac{\mathrm{d}^{2} \hat u(x, s)}{\mathrm{d} x^{2}} su^(x,s)=adx2d2u^(x,s)
注意到,这里用到了初值条件,消掉了分部积分出来的一项。求解之,得到:
u ^ ( x , s ) = c 1 exp ( − s a x ) + c 2 exp ( s a x ) \hat u(x, s)=c_{1} \exp \left(-\sqrt{\frac{s}{a}} x\right)+c_{2} \exp \left(\sqrt{\frac{s}{a}} x\right) u^(x,s)=c1exp(−asx)+c2exp(asx)
对边值条件,做拉普拉斯变换,可得:
u ^ ( 0 , s ) = ∫ 0 ∞ U e − s t d t = U s \hat u(0, s)=\int_{0}^{\infty} U \mathrm{e}^{-s t} \mathrm{d} t=\frac{U}{s} u^(0,s)=∫0∞Ue−stdt=sU
u ^ ( + ∞ , s ) = 0 \hat u(+\infty, s)=0 u^(+∞,s)=0
故 c 1 = U / s , c 2 = 0 c_1 = U/s,c_2=0 c1=U/s,c2=0。
综上,可以得到拉普拉斯变换之后的解为:
u ^ ( x , s ) = U s exp ( − s a x ) \hat u(x, s)=\frac{U}{s} \exp \left(-\sqrt{\frac{s}{a}} x\right) u^(x,s)=sUexp(−asx)
对拉普拉斯变换后的解,可得:
u ( x , t ) = L − 1 [ U s exp ( − s a x ) ] = 2 U π [ π 2 + ∫ x 2 m 0 exp ( − η 2 ) d η ] \begin{array}{l}{u(x, t)=L^{-1}\left[\frac{U}{s} \exp \left(-\sqrt{\frac{s}{a}} x\right)\right]=} \\ {\frac{2 U}{\sqrt{\pi}}\left[\frac{\sqrt{\pi}}{2}+\int_{\frac{x}{2 \sqrt{m}}}^{0} \exp \left(-\eta^{2}\right) \mathrm{d} \eta\right]}\end{array} u(x,t)=L−1[sUexp(−asx)]=π2U[2π+∫2mx0exp(−η2)dη]
这里用到了一个高斯函数的积分公式:
∫
0
∞
exp
(
−
η
2
)
d
η
=
1
2
Γ
(
1
2
)
=
π
/
2
\int_{0}^{\infty} \exp \left(-\eta^{2}\right) \mathrm{d} \eta=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\sqrt \pi /2
∫0∞exp(−η2)dη=21Γ(21)=π/2