驱动方腔流SIMPLE方法

驱动方腔流SIMPLE方法

问题描述:二维驱动方腔流

请在矩形区域上数值地求解不可压NS方程,你的报告将包含但不仅限于以下的讨论:

  • 问题描述和数值格式

  • 格式的时空精度分析

  • 比较非线性项处理的守恒格式和非守恒格式的不同

  • 不同雷诺数的影响(分别取100、1000、3000)

数值格式:SIMPLE格式

问题的数学表达

考虑二维空间的不可压NS方程:
u t + p x = − ( u 2 ) x − ( u v ) y + 1 R e ( u x x + u y y ) v t + p y = − ( u v ) x − ( v 2 ) y + 1 R e ( v x x + v y y ) u x + v y = 0 \begin{aligned} u_{t}+p_{x} &=-\left(u^{2}\right)_{x}-(u v)_{y}+\frac{1}{R e}\left(u_{x x}+u_{y y}\right) \\ v_{t}+p_{y} &=-(u v)_{x}-\left(v^{2}\right)_{y}+\frac{1}{R e}\left(v_{x x}+v_{y y}\right) \\ u_{x}+v_{y} &=0 \end{aligned} ut+pxvt+pyux+vy=(u2)x(uv)y+Re1(uxx+uyy)=(uv)x(v2)y+Re1(vxx+vyy)=0
其中,求解区域为: Ω = [ 0 , l x ] × [ 0 , l y ] \Omega=\left[0, l_{x}\right] \times\left[0, l_{y}\right] Ω=[0,lx]×[0,ly],四条边界按东南西北依次记为 E S W N \mathbf{ESWN} ESWN。边界条件考虑无滑移的边界条件,即:
u ( x , l y ) = u N ( x ) v ( x , l y ) = 0 u ( x , 0 ) = u S ( x ) v ( x , 0 ) = 0 u ( 0 , y ) = 0 v ( 0 , y ) = v W ( y ) u ( l x , y ) = 0 v ( l x , y ) = v E ( y ) \begin{array}{rl}{u\left(x, l_{y}\right)=u_{N}(x)} & {v\left(x, l_{y}\right)=0} \\ {u(x, 0)=u_{S}(x)} & {v(x, 0)=0} \\ {u(0, y)=0} & {v(0, y)=v_{W}(y)} \\ {u\left(l_{x}, y\right)=0} & {v\left(l_{x}, y\right)=v_{E}(y)}\end{array} u(x,ly)=uN(x)u(x,0)=uS(x)u(0,y)=0u(lx,y)=0v(x,ly)=0v(x,0)=0v(0,y)=vW(y)v(lx,y)=vE(y)
结合不可压条件,方程中的非线性项写为非守恒的模样,为:
( u 2 ) x + ( u v ) y = u u x + v u y ( u v ) x + ( v 2 ) y = u v x + v v y \begin{array}{l}{\left(u^{2}\right)_{x}+(u v)_{y}=u u_{x}+v u_{y}} \\ {(u v)_{x}+\left(v^{2}\right)_{y}=u v_{x}+v v_{y}}\end{array} (u2)x+(uv)y=uux+vuy(uv)x+(v2)y=uvx+vvy
这其实就是NS方程中的对流项。

交错网格

在这里插入图片描述

和一般的差分说不同的是,交错网格将不同的速度分量,以及压力标记在不同的位置。如图所示,实心圆处表示速度分量 U U U的位置,空心圆处表示速度分量 V V V的位置,网格的中点用叉叉表示的地方是压力 P P P所在的位置。那么可以看到,在考虑边界条件的时候, U U U在左右两边刚好达到边界,而上下两边则需要在边界处还要多往外扩充半格。对于 V V V也是一样的道理。而压力 P P P的边界,在四个面上都往外半格。这些扩充出去的半个格点处的值要怎么求呢?用最为普通的差分处理方法,结合边界条件即可,十分简单。这就是所谓的"交错网格"。

求解步骤

不再琐碎地叙述非线性项怎么处理,粘性项怎么处理,压力怎么矫正等等,下面给出一个顺序的求解步骤描述,希望读者看着这些步骤,结合交错网格的编号,很容易就写出程序。

非线性项处理

一般问题,方程中的非线性项只能显式处理,差分如是,有限元也如是(非线性项不好做变分),但是显式处理的问题就是有些时候不太稳定,在这里表现的就是对CFL数有要求。
U ∗ − U n Δ t = − ( ( U n ) 2 ) x − ( U n V n ) y V ∗ − V n Δ t = − ( U n V n ) x − ( ( V n ) 2 ) y \begin{array}{l}{\frac{U^{*}-U^{n}}{\Delta t}=-\left(\left(U^{n}\right)^{2}\right)_{x}-\left(U^{n} V^{n}\right)_{y}} \\ {\frac{V^{*}-V^{n}}{\Delta t}=-\left(U^{n} V^{n}\right)_{x}-\left(\left(V^{n}\right)^{2}\right)_{y}}\end{array} ΔtUUn=((Un)2)x(UnVn)yΔtVVn=(UnVn)x((Vn)2)y
通过这个,我们就可以算一步到 U ∗ , V ∗ U^*,V^* U,V。问题在于,等式右边的非线性项要怎么离散(这里举的是守恒的表示,非守恒也一样)。这里的困难在于,我们用的是交错格式,离散变量都没取在相同的位置,况且在做个导数离散,导数值都指不定到哪些点上去。怎么办呢?我们可以通过已有点的值,通过平均的方法,生成更多点值,用这些生成的点的值,就可以构造正确位置的导数离散。
因为中心差分不稳定,所以非线性项的离散我们一般用中心差分和迎风结合的方法,什么意思呢?
我们分别计算 U U U的水平平均(到了每个格子中心),以及 U U U的垂直平均(到了网格交点上),即:
( U ˉ h ) i + 1 2 , j = U i , j + U i + 1 , j 2 ( U ˉ v ) i , j + 1 2 = U i , j + U i , j + 1 2 \begin{aligned}\left(\bar{U}^{h}\right)_{i+\frac{1}{2}, j} &=\frac{U_{i, j}+U_{i+1, j}}{2} \\\left(\bar{U}^{v}\right)_{i, j+\frac{1}{2}} &=\frac{U_{i, j}+U_{i, j+1}}{2} \end{aligned} (Uˉh)i+21,j(Uˉv)i,j+21=2Ui,j+Ui+1,j=2Ui,j+Ui,j+1
类似,定义网格差分量为:
( U ~ h ) i + 1 2 , j = U i + 1 , j − U i , j 2 ( U ~ v ) i , j + 1 2 = U i , j + 1 − U i , j 2 \begin{aligned}\left(\tilde{U}^{h}\right)_{i+\frac{1}{2}, j} &=\frac{U_{i+1, j}-U_{i, j}}{2} \\\left(\tilde{U}^{v}\right)_{i, j+\frac{1}{2}} &=\frac{U_{i, j+1}-U_{i, j}}{2} \end{aligned} (U~h)i+21,j(U~v)i,j+21=2Ui+1,jUi,j=2Ui,j+1Ui,j
V V V也做类似的定义,就不再敲表达式了。不同的是,对 V V V来说,做垂直的平均和差分,值在格子中心,而水平的,到了格点(线交点)上。那么,计算格式为:
U ∗ − U Δ t = − ( ( U ‾ h ) 2 − γ ∣ U ‾ h ∣ U ~ h ) x − ( ( U ‾ v V ‾ h ) − γ ∣ V ‾ h ∣ U ~ v ) y V ∗ − V Δ t = − ( ( U ‾ v V ‾ h ) − γ ∣ U ‾ v ∣ V ~ h ) x − ( ( V ‾ v ) 2 − γ ∣ V ‾ v ∣ V ~ v ) y \begin{aligned} \frac{U^{*}-U}{\Delta t} &=-\left(\left(\overline{U}^{h}\right)^{2}-\gamma\left|\overline{U}^{h}\right| \tilde{U}^{h}\right)_{x}-\left(\left(\overline{U}^{v} \overline{V}^{h}\right)-\gamma\left|\overline{V}^{h}\right| \tilde{U}^{v}\right)_{y} \\ \frac{V^{*}-V}{\Delta t} &=-\left(\left(\overline{U}^{v} \overline{V}^{h}\right)-\gamma\left|\overline{U}^{v}\right| \tilde{V}^{h}\right)_{x}-\left(\left(\overline{V}^{v}\right)^{2}-\gamma\left|\overline{V}^{v}\right| \tilde{V}^{v}\right)_{y} \end{aligned} ΔtUUΔtVV=((Uh)2γUhU~h)x((UvVh)γVhU~v)y=((UvVh)γUvV~h)x((Vv)2γVvV~v)y
这样,不难看到,对右边做中心离散(单格),位置就和等式左边的照上了,还是 U , V U,V U,V原来所在的位置。这里的 γ \gamma γ取值如下:
γ = min ⁡ ( 1.2 ⋅ Δ t ⋅ max ⁡ ( max ⁡ i , j ∣ U i , j ∣ , max ⁡ i , j ∣ V i , j ∣ ) , 1 ) \gamma=\min \left(1.2 \cdot \Delta t \cdot \max \left(\max _{i, j}\left|U_{i, j}\right|, \max _{i, j}\left|V_{i, j}\right|\right), 1\right) γ=min(1.2Δtmax(i,jmaxUi,j,i,jmaxVi,j),1)

粘性项处理

隐式处理粘性项:
U ∗ ∗ − U ∗ Δ t = 1 R e ( U x x ∗ ∗ + U y y ∗ ∗ ) V ∗ ∗ − V ∗ Δ t = 1 R e ( V x x ∗ ∗ + V y y ∗ ∗ ) \begin{aligned} \frac{U^{* *}-U^{*}}{\Delta t} &=\frac{1}{R e}\left(U_{x x}^{* *}+U_{y y}^{* *}\right) \\ \frac{V^{* *}-V^{*}}{\Delta t} &=\frac{1}{R e}\left(V_{x x}^{* *}+V_{y y}^{* *}\right) \end{aligned} ΔtUUΔtVV=Re1(Uxx+Uyy)=Re1(Vxx+Vyy)
二阶导数的离散直接采用最一般的二阶中心离散方法即可,利用已定义的位置上的值。

压力校正

对于顶盖驱动方腔问题,压力用的是齐次的诺依曼边界条件。校正的步骤如下:

  • 计算离散的散度值: F n = ∇ ⋅ U n F^{n}=\nabla \cdot \mathbf{U}^{n} Fn=Un。容易想到,这个值在格中心。

  • 求解泊松方程: − Δ P n + 1 = − 1 Δ t F n -\Delta P^{n+1}=-\frac{1}{\Delta t} F^{n} ΔPn+1=Δt1Fn。因为压力的定义,也是在格子中心,这个求解是自然而然的。

  • 计算压力梯度: G n + 1 = ∇ P n + 1 \mathbf{G}^{n+1}=\nabla P^{n+1} Gn+1=Pn+1。显然,这个梯度包含了两个方面,对 x x x
    的导数(刚好落到 U U U的位置),和对 y y y的导数(刚好落到 V V V的位置)。

  • 更新速度域: U n + 1 = U n − Δ t G n + 1 \mathbf{U}^{n+1}=\mathbf{U}^{n}-\Delta t \mathbf{G}^{n+1} Un+1=UnΔtGn+1

当然,这里的 U U U取的实际是上一步得到的 U ∗ ∗ U^{**} U。用公式来表达这个过程,就是:
求解:
− Δ P n + 1 = − 1 Δ t ∇ ⋅ U n -\Delta P^{n+1}=-\frac{1}{\Delta t} \nabla \cdot \mathbf{U}^{n} ΔPn+1=Δt1Un
得到压力 P P P后,求解:
U n + 1 − U ∗ ∗ Δ t = − ( P n + 1 ) x V n + 1 − V ∗ ∗ Δ t = − ( P n + 1 ) y \begin{aligned} \frac{U^{n+1}-U^{* *}}{\Delta t} &=-\left(P^{n+1}\right)_{x} \\ \frac{V^{n+1}-V^{* *}}{\Delta t} &=-\left(P^{n+1}\right)_{y} \end{aligned} ΔtUn+1UΔtVn+1V=(Pn+1)x=(Pn+1)y

精度分析

往观这些求解格式,空间上离散采用的基本上算是中心差分,时间上采用的欧拉离散(显示和隐式),所以目测这个格式的精度应该是 O ( Δ x 2 + Δ t ) O(\Delta x ^2+\Delta t) O(Δx2+Δt)
另外一点,我们再取 γ \gamma γ的时候,其表达式前面的1.2取得不好,对精度有影响。
时间和空间的精度分析,做泰勒展开可以很容易得到,为了节省时间,报告也马上就要提交了,这里就不再细述了。

非线性项的守恒格式和非守恒格式

以上提到的都是守恒格式非线性项的处理,对于非守恒格式,可以这个样子处理非线性项:
U ∗ − U n Δ t = − U U x − V U y V ∗ − V n Δ t = − U V x − V V y \begin{aligned} \frac{U^{*}-U^{n}}{\Delta t} &=-UU_{x}-VU_{y} \\ \frac{V^{*}-V^{n}}{\Delta t} &=-UV_{x}-VV_{y} \end{aligned} ΔtUUnΔtVVn=UUxVUy=UVxVVy
同样地,我们需要做一些平均,使得等式左右两边对应的点照上。以第一个式子为例:
U x U_x Ux的离散,我们首先得对 U U U x x x方向上的平均,把值挪到网格中心,得到 U ˉ h \bar U^h Uˉh。对于 V V V,我们可以做 U U U周围的四点平均,把值挪到 U U U所在的位置。对于 U y U_y Uy的离散,我们可以做 U U U的竖直平均得到网格交点上的值 U ˉ v \bar U^v Uˉv后,再做中心差分近似,得到的值刚好也在 U U U的位置。
思路就是这样,程序修改也很简单。考虑到非守恒总是不如守恒的,以及时间问题,就不再详细去做。

不同雷诺数的结果比较

可视化

为了画图看效果,我们可以画一下流线,画流线,需要用到流函数,取流函数的等高线,就是流场。所谓的流线,其实就是各个点顺着速度走的方向,串在一块。那么流函数就要在垂直速度的方向上进行递增,这样,它的水平集才能体现流线。
q q q来表示流函数,即有:
( ∇ q ) ⊥ = u ⟺ − q y = u  and  q x = v (\nabla q)^{\perp}=\mathbf{u} \quad \Longleftrightarrow \quad-q_{y}=u \text { and } q_{x}=v (q)=uqy=u and qx=v
两边儿都加个旋度算子,就变成了:
− Δ q = ∇ × ( ∇ q ) ⊥ = ∇ × u ⟺ − Δ q = − q y y − q x x = u y − v x -\Delta q=\nabla \times(\nabla q)^{\perp}=\nabla \times \mathbf{u} \quad \Longleftrightarrow \quad-\Delta q=-q_{y y}-q_{x x}=u_{y}-v_{x} Δq=×(q)=×uΔq=qyyqxx=uyvx
所以说,求流函数很简单,同样是交错网格,我们把流函数的值定义在网格交点上。那么,要得到流函数,只要求解泊松方程:
− Δ Q n = ( U n ) y − ( V n ) x -\Delta Q^n = (U^n)_y-(V^n)_x ΔQn=(Un)y(Vn)x

不同雷诺数下的观察

使用MIT的程序,跑了跑,贴几张图。MIT的程序可以在这里下载到。
下面我修改程序,把雷诺数设为100,1000,3000,来看看情况。对于标量函数 P P P来说,用一张热图(颜色图)就可以刻画趋势,对于矢量,除了大小,还有方向,要怎么呈现呢?方向可以用带箭头的图,以及流线来体现,大小还是可以用色图,对吧。我把流线图和速度矢量图画在一张图上,压力图画一张图。

在这里插入图片描述

从图中可以看出,在雷诺数为100时,在角落没有形成涡。

在这里插入图片描述

从图中可以看出,在雷诺数为1000时,右下角形成了一个涡。

在这里插入图片描述

从图中可以看出,在雷诺数为1000时,左下角和右下角各形成了一个涡。

简单修改后的代码和注释

function  mit18086_navierstokes
%NAVIERSTOKES
%    Solves the incompressible Navier-Stokes equations in a
%    rectangular domain with prescribed velocities along the
%    boundary. The solution method is finite differencing on
%    a staggered grid with implicit diffusion and a Chorin
%    projection method for the pressure.
%    Visualization is done by a colormap-isoline plot for
%    pressure and normalized quiver and streamline plot for
%    the velocity field.
%    The standard setup solves a lid driven cavity problem.
%-----------------------------------------------------------------------
clc
clear
close all
Re = 3000;     % Reynolds number100 1000 3000  %%%%%%%%%%%%%%%%%%%
dt = 1e-2;    % time step
tf = 50;    % final time 10 30 50%%%%%%%%%%%%%%%%%%%%%%%
lx = 1;       % width of box
ly = 1;       % height of box
nx = 100;      % number of x-gridpoints
ny = 100;      % number of y-gridpoints
nsteps = 10;%round(tf/dt/10);  % number of steps with graphic output
%-----------------------------------------------------------------------
nt = ceil(tf/dt); dt = tf/nt;
x = linspace(0,lx,nx+1); hx = lx/nx;
y = linspace(0,ly,ny+1); hy = ly/ny;
[X,Y] = meshgrid(y,x);
%-----------------------------------------------------------------------
% initial conditions
U = zeros(nx-1,ny); V = zeros(nx,ny-1);
% boundary conditions
uN = x*0+1;    vN = avg(x)*0;
uS = x*0;      vS = avg(x)*0;
uW = avg(y)*0; vW = y*0;
uE = avg(y)*0; vE = y*0;
%-----------------------------------------------------------------------
Ubc = dt/Re*([2*uS(2:end-1)' zeros(nx-1,ny-2) 2*uN(2:end-1)']/hx^2+...
    [uW;zeros(nx-3,ny);uE]/hy^2);
Vbc = dt/Re*([vS' zeros(nx,ny-3) vN']/hx^2+...
    [2*vW(2:end-1);zeros(nx-2,ny-1);2*vE(2:end-1)]/hy^2);

fprintf('initialization')
%拉普拉斯算子的矩阵逼近
Lp = kron(speye(ny),K1(nx,hx,1))+kron(K1(ny,hy,1),speye(nx));
Lp(1,1) = 3/2*Lp(1,1);
%symamd,重排求解的线性方程组,使高斯消元的时候,即可能少了产生非零元
perp = symamd(Lp); Rp = chol(Lp(perp,perp)); Rpt = Rp';
Lu = speye((nx-1)*ny)+dt/Re*(kron(speye(ny),K1(nx-1,hx,2))+...
    kron(K1(ny,hy,3),speye(nx-1)));
peru = symamd(Lu); Ru = chol(Lu(peru,peru)); Rut = Ru';
Lv = speye(nx*(ny-1))+dt/Re*(kron(speye(ny-1),K1(nx,hx,3))+...
    kron(K1(ny-1,hy,2),speye(nx)));
perv = symamd(Lv); Rv = chol(Lv(perv,perv)); Rvt = Rv';
Lq = kron(speye(ny-1),K1(nx-1,hx,2))+kron(K1(ny-1,hy,2),speye(nx-1));
perq = symamd(Lq); Rq = chol(Lq(perq,perq)); Rqt = Rq';

fprintf(', time loop\n--20%%--40%%--60%%--80%%-100%%\n')
for k = 1:nt
    % treat nonlinear terms
    gamma = min(1.2*dt*max(max(max(abs(U)))/hx,max(max(abs(V)))/hy),1);
    %首先扩充速度矩阵,把矩阵倒着看,即行标对应x,列标对应y
    Ue = [uW;U;uE]; Ue = [2*uS'-Ue(:,1) Ue 2*uN'-Ue(:,end)];
    Ve = [vS' V vN']; Ve = [2*vW-Ve(1,:);Ve;2*vE-Ve(end,:)];
    Ua = avg(Ue')'; Ud = diff(Ue')'/2;
    Va = avg(Ve);   Vd = diff(Ve)/2;
    %计算非线性项,UVx和UVy
    UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd)/hx;
    UVy = diff((Ua.*Va-gamma*Ud.*abs(Va))')'/hy;
    %计算U方x和V方y
    Ua = avg(Ue(:,2:end-1));   Ud = diff(Ue(:,2:end-1))/2;
    Va = avg(Ve(2:end-1,:)')'; Vd = diff(Ve(2:end-1,:)')'/2;
    U2x = diff(Ua.^2-gamma*abs(Ua).*Ud)/hx;
    V2y = diff((Va.^2-gamma*abs(Va).*Vd)')'/hy;
    %更新内部点的值
    U = U-dt*(UVy(2:end-1,:)+U2x);
    V = V-dt*(UVx(:,2:end-1)+V2y);

    % implicit viscosity
    %把U拉成一列来搞
    rhs = reshape(U+Ubc,[],1);
    u(peru) = Ru\(Rut\rhs(peru));
    U = reshape(u,nx-1,ny);
    rhs = reshape(V+Vbc,[],1);
    v(perv) = Rv\(Rvt\rhs(perv));
    V = reshape(v,nx,ny-1);

    % pressure correction
    %压力校正,计算速度域的散度
    %计算右端项的矩阵形式,reshape,求解线性系统,在reshape回来,更新
    %内部点的值
    rhs = reshape(diff([uW;U;uE])/hx+diff([vS' V vN']')'/hy,[],1);
    p(perp) = -Rp\(Rpt\rhs(perp));
    P = reshape(p,nx,ny);
    %通过-\nabla P更新内部点的值
    U = U-diff(P)/hx;
    V = V-diff(P')'/hy;

    % visualization
    if floor(25*k/nt)>floor(25*(k-1)/nt), fprintf('.'), end
    if k==1|floor(nsteps*k/nt)>floor(nsteps*(k-1)/nt)
        % stream function
        % 计算速度域的旋度
        %流函数,解线性方程组,为了可视化,齐次狄利克雷边界点包含在矩阵Q中
        rhs = reshape(diff(U')'/hy-diff(V)/hx,[],1);
        q(perq) = Rq\(Rqt\rhs(perq));
        Q = zeros(nx+1,ny+1);
        Q(2:end-1,2:end-1) = reshape(q,nx-1,ny-1);
        % clf, contourf(avg(x),avg(y),P',20,'w-'), hold on
        Ue = [uS' avg([uW;U;uE]')' uN'];
        Ve = [vW;avg([vS' V vN']);vE];
        Len = sqrt(Ue.^2+Ve.^2+eps);

        figure(1);
        subplot(1,2,2);
        contourf(avg(x),avg(y),P',20,'w-');%压力图
        axis equal, axis([0 lx 0 ly])
        %    axis('')
        p = sort(p);
        caxis(p([8 end-7]));
        title('pressure P');

        subplot(1,2,1);
        contour(x,y,Q',40,'k-');%流线图 300 100 40%%%%%%%%%%%%%%%%%%%%%%%%%%
        axis equal, axis([0 lx 0 ly])
        hold on;
        %  p = sort(p);
        %  caxis(p([8 end-7]))

        %      subplot(2,2,2);
        stride = 2;
        x_temp = x(1:stride:end);
        y_temp = y(1:stride:end);
        Ue_temp = Ue(1:stride:end,1:stride:end);
        Ve_temp = Ve(1:stride:end,1:stride:end);
        Len_temp = Len(1:stride:end,1:stride:end);

        quiver(x_temp,y_temp,(Ue_temp./Len_temp)',(Ve_temp./Len_temp)',.4,'g.')%速度的箭头矢量图
        axis equal, axis([0 lx 0 ly])
        % p = sort(p);
        % caxis(p([8 end-7]))
        title('velocity vector U & stream function Q');

        %   hold off,
        %        axis equal, axis([0 lx 0 ly])
        %        p = sort(p);
        %        caxis(p([8 end-7]))
        %  caxis('auto')
        suptitle(sprintf('Re = %0.1g   t = %0.2g',Re,k*dt));
        drawnow
    end
end
fprintf('\n')

%=======================================================================

function B = avg(A,k)
if nargin<2, k = 1; end
if size(A,1)==1, A = A'; end
if k<2, B = (A(2:end,:)+A(1:end-1,:))/2; else, B = avg(A,k-1); end
if size(A,2)==1, B = B'; end

function A = K1(n,h,a11)
% a11: Neumann=1, Dirichlet=2, Dirichlet mid=3;
A = spdiags([-1 a11 0;ones(n-2,1)*[-1 2 -1];0 a11 -1],-1:1,n,n)'/h^2;
### 回答1: 方腔驱动流是一种用于研究流体力学和空气动力学的实验方法,它主要利用空腔中的流体动力学特性来模拟实际流动情况。在方腔驱动流实验中,通常会使用一个长方体腔体,并通过激励装置施加外部驱动力来操控流体的运动。 方腔驱动流实验主要包含三个方面的内容:腔体设计、驱动力施加和流场观测。首先,在腔体设计方面,需要考虑到腔体的几何形状、大小和比例。通常情况下,腔体会按照特定的宽度、高度和长度比例来设计,以保证实验结果的可靠性和准确性。 其次,在驱动力施加方面,可以通过不同的方法来激励流体的运动,常见的方法包括在腔体的一个或多个边界上施加周期性的压力或速度扰动,以及利用振荡装置或电磁驱动来产生所需的流场。 最后,在流场观测方面,可以利用高速摄像技术或激光测量方法来实时观测流场的变化,以获取各种流动参数,如速度场、压力场和涡量场等,进而分析和研究流动的特性。 总之,方腔驱动流实验是一种常用的研究流体力学和空气动力学的方法,通过操控流体的运动来模拟实际流动情况,从而提高对流动特性的了解和认识。该实验方法在工程学、气象学和地球物理学等领域广泛应用,并对这些领域的研究和发展起到了重要的推动作用。 ### 回答2: 方腔驱动流是一种流动现象的描述,指的是通过一个具有方形横截面的腔体中的流体受到外部驱动力的作用而产生的流动。它是流体力学中的一个研究领域,具有广泛的应用。 方腔驱动流实际上是由两个相对移动的平行板限制的流动。当在腔体的一侧施加一个恒定的速度,而在另一侧保持静止时,就会形成方腔驱动流。通过对方腔驱动流的研究,可以深入理解流体的行为和流动特性。 方腔驱动流的研究对于理解流体的输运现象以及模拟流体行为具有重要意义。在实际应用中,方腔驱动流可以模拟微机电系统中的微小通道流动、液晶显示器中的液晶流动以及生物体中的血液流动等。 通过实验和数值模拟,可以观察到方腔驱动流的一些特征,比如流速、湍流强度和流体的输运行为等。研究者还通过调整腔体的尺寸、运动方式和流体的性质等条件,来研究方腔驱动流的不同行为和特性。 总的来说,方腔驱动流是流体力学中的一个重要研究领域,通过研究方腔驱动流可以深入了解流体的行为和特性。这种研究在科学研究和工程应用中具有广泛的应用前景。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值