无人驾驶
智能机器人相关算法
科学边界
这个作者很懒,什么都没留下…
展开
-
无人驾驶14:PID控制器实例
这是优达学城PID控制器项目实现,这个调试方法是做项目时,mentor给的建议,实践中,效果还蛮不错~~PID Controllerthe project require to create a PID Controller for the vehicle on the high way.PID effectonsP Controller is a based controller....原创 2020-02-29 21:51:40 · 1238 阅读 · 9 评论 -
无人驾驶13:PID控制器
基于环境反馈的控制方法,叫做反馈控制。控制模块的目的是让无人车能够按照规划好的路径行驶,需要将环境当前的反馈和规划的参考量进行比较,得到当前偏离参考量的误差,并基于这个误差设计一定的算法来产生输出信号,使得误差不断变小,直到为0.PID控制器是目前应用最广泛的控制理论。PID控制器是指P(Proportion 比例)、I(Integral 积分),D(Derivative 微分) ,这三项如...原创 2020-02-29 21:43:40 · 2297 阅读 · 1 评论 -
无人驾驶12:路径规划,生成路径曲线
运动规划问题:配置空间配置空间:定义机器人的所有可能配置,一般在二维空间中,定义为[x,y, theat],即二维坐标加方向。运动规划:就是根据初始配置(由定位模块传感器获得),目的配置(由行为规划模块获得),在一定的限制条件下(车辆属性,交通法规),结合预测模块(提供有关障碍区域随时间演进的信息),在配置空间中,生成一个可执行的运动序列(纳入了其他车辆及行人考量)。这些运动(可转化为...原创 2020-02-29 21:14:01 · 4801 阅读 · 0 评论 -
无人驾驶11:行为规划
行为规划的内容包括车辆如何生成安全的、可行驶的轨迹以到达目的地:我们会使用计算机视觉和传感器融合得到的数据,来理解我们周围的环境,也将使用从定位模块得到的数据来精确理解我们具体置身何处,路径规划使用所有这些数据来决定下一步执行何种动作,然后,路径规划构造出一条轨迹,让控制器去执行。无人驾驶系统的规划层包括三层结构:任务规划、行为规划和动作规划‾\underline{任务规划、行为规划和动作...原创 2020-02-29 21:01:00 · 1216 阅读 · 0 评论 -
无人驾驶10:行为预测
预测模块工作过程:预测模块根据输入的地图数据,以及传感器融合的数据,生成并输出一些预测数据,这些预测数据,包含了周围所有其他机动车以及其他移动物体的未来状态。通常,这些预测数据可以展示为若干可能的运动轨迹。预测数据还包括每条轨迹的几率大小;预测技术常用有两种:1.基于模型法使用运动数学模型,预测运动轨迹,2.数据驱动法依赖于机器学习和案例学习基于模型方法吸收了有关物理限制的知...原创 2020-02-29 17:31:13 · 1844 阅读 · 2 评论 -
无人驾驶9:路径规划(离散):A star算法
1 广度优先搜索算法(Breadth-First_Search)核心思想是,从起始节点开始,将它的所有Neigbors加入到下一步要搜索的预备队列中;然后从预备队列按一定规则选出一个节点,重复上一步骤;直到找到目的节点。1.1涉及到的数据结构Graph: 有向图,每个节点可以指向的下一个临近节点组成一个列表;数组: 存放待遍历的节点,常用队列来实现;Visited列表:存放已经遍历过的...原创 2020-02-29 17:16:44 · 1214 阅读 · 3 评论 -
无人驾驶8: 粒子滤波定位(优达学城项目)
优达学城无人车定位的项目实现:粒子滤波算法流程图粒子滤波的伪代码:step1:初始化理论上说,当粒子数量足够多时,能准确地呈现贝叶斯后验分布,如果粒子太少,可能漏掉准确位置,粒子数量太多,会拖慢滤波器,无法实时定位无人车位置。粒子初始化有两个方法;1.在状态空间均匀取样;空间太大时(比如全球),不易实现;2.在某个初始估算值周围取样;对于无人车,可以用GPS获取估算位置;这里采...原创 2020-02-29 17:02:23 · 1062 阅读 · 0 评论 -
无人驾驶7:粒子滤波
粒子滤波定位原理和过程:1.初始化:在已知地图上随机初始化N个粒子(N取合适值,太小,不足以估算真实位置,太大,增大计算量);2.运动更新:根据运动模型,更新每个粒子状态;3.测量更新:根据传感器测量融合信息,更新所有粒子状态;4.重采样: 根据步骤3中测量更新后的状态信息,重新采集样本,置信度越高的点给予更高权重,反之权重越低;重复2,3,4过程。说明:粒子滤波本质上还是基于贝叶斯...原创 2020-02-29 16:52:44 · 780 阅读 · 0 评论 -
无人驾驶6:马尔卡夫滤波
无人车定位问题准确定位,是无人车技术的基础,常用的GPS定位,误差经常为210m,而无人车的精度要求210cm左右,怎么实现呢,这就是无人车的定位问题。变量定义z1:tz_{1:t}z1:t: 从时间步骤1到t的所有观测, 观察数据可能是距离测量值,方向角或者图像等等。u1:tu_{1:t}u1:t: 从时间步骤1到t的所有控制元素,一般包括偏航角、间距或滚动率、速度信息m: 可...原创 2020-02-29 16:39:21 · 505 阅读 · 0 评论 -
无人驾驶5: 贝叶斯公式
假设有个一维的方格,初始位置为均匀分布(因为不知道任何信息)测量更新测量当前方格颜色之后,计算所有方格概率分布#Modify your code so that it normalizes the output for #the function sense. This means that the entries in q #should sum to one.p=[0.2, 0...原创 2020-02-29 16:21:04 · 743 阅读 · 0 评论 -
无人驾驶4: 无损卡尔曼滤波
在上一节的扩展卡尔曼滤波跟踪系统中,有两个缺陷:系统采用恒速模型:假定行人沿直线运动;实际应用中,出现曲线运动时,预估不够准确。每次测量都需要计算雅可比矩阵,很耗资源。当问题一旦变得复杂,预测和测量模型高度非线性化时,EKF计算量就变得十分不可控,效果表现也较差;为解决这些问题,学习一个新的状态估计算法–无损卡尔曼滤波(Unscented Kalman Filters)无损卡...原创 2020-02-14 01:15:51 · 2131 阅读 · 3 评论 -
无人驾驶3:扩展卡尔曼滤波--传感器融合
这是有优达学城的无人驾驶纳米学位第五个项目;1. 传感器在无人驾驶系统中,对物体跟踪和预测,目前常用的传感器有Laser 和 Radar。激光:可以测量准确的位置信息Px,PyP_x, P_yPx,Py,实际上无法直接观测其速度;雷达:根据多普勒效应,雷达能直接测量移动对象的经向速度;如果能够把激光和雷达的测量值都融合进卡尔曼滤波系统中,那么可以更好的改进跟踪系统,能够准确地估算行...原创 2020-02-09 23:58:54 · 1863 阅读 · 0 评论 -
无人驾驶2:卡尔曼滤波行人状态估计
案例场景传感器能够直接观测到某行人的速度Vx,Vy,用卡尔曼滤波估算该行人的状态(包含速度和位置)相关变量约定如下:行人状态 x=(px,py,vx,vy)Tx = (p_x,p_y,v_x, v_y)^Tx=(px,py,vx,vy)TP: 行人不确定性,协方差矩阵F: 状态转移矩阵Q: 过程噪声协方差矩阵K: 卡尔曼滤波增益H: 观测矩阵R: 观测噪声协方差矩阵st...原创 2020-02-08 21:29:56 · 1685 阅读 · 1 评论 -
无人驾驶1:卡尔曼滤波原理及实现(以无人车观测为实例)
高斯分布(Gaussian distribution): 也叫正态分布(Normal distribution),是一个在自然和社会科学中,非常广泛存在的一个连续概率分布。概率密度函数为:f(x)=1σ(2π)e−(x−μ)22σ2 f(x) = \frac{1} {\sigma\sqrt{(2\pi)}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}f(x)=σ(2π)...原创 2020-01-04 14:30:49 · 1804 阅读 · 0 评论