由生物学基础我们知道,神经网络是有无数个神经元和连接这些神经元的突触构成的,某个神经元接受一系列的电信号刺激,当这个刺激达到一定的阀值后,这个神经元就被激活,通过突触将某些信息传递给下一个神经元。每个神经元可以看成是一个激活函数(activation function),输入值为强度大小不同的电刺激,输出值为传递给下一个神经元的刺激。
我们先来看神经网络最简单的形式,神经元。
输入:
x1,x2,x3 和 +1
输出:
最常见的激活函数形式有:
神经网络由多个神经元组成:
为了方便表示,我们定义一些符号:
nl:神经网络的层数 Ll为输入层 为输出层
:是第l层的第j个单元与第l+1层的第i个单元之间的参数
:表示的是第l层的第i个单元被激活(激活函数的输出值) l=1时候代表输入值x
:表示的是第l层的第i个单元的所有输入值
.
于是我们有:
将z向量化表示后:
最后化简得到:
这个就是所谓的向前传导(forward propagation),可以理解为刺激由左往右逐层传递,最后输出一个值。
参考资料http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial