算法时间与空间复杂度

数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间?
1.如何理解代码时间复杂度和空间复杂度。
时间复杂度:表示执行的快慢。 公式:T(n)=O(f(n)),T(n) 表示代码执行的时间;n表示数据规模的大小;f(n) 表示每行代码执行的次数总和
空间复杂度:表示内存的消耗。 公式:S(n)=O(f(n)),S(n) 表示代码所需的空间:n为问题的规模,f(n)为语句关于n的所占存储空间
2.时间复杂度分析法则
(2.1)O(1)复杂度
 int i = 8;
 int j = 6;
 int sum = i + j;
复杂度:O(1+1+1)->O(1)
(2.2)O(logn)复杂度
 i=1;
 while (i <= n)  {
   i = i * 2;
 }
复杂度:O(log2n)->O(logn)
(2.3)O(nlogn)复杂度
 for(int i=0;i<n;i++){
     i=1;
     while (i <= n)  {
       i = i * 2;
     }
 }
复杂度:O(nlogn)
(2.4)O(m+n)复杂度
int cal(int m, int n) {
  for (; i < m; ++i) {
    ....    
  }
  for (; j < n; ++j) {
    ....
  }
}
复杂度:O(m+n)
(2.5)O(m*n)复杂度
int cal(int m, int n) {
  for (; i < m; ++i) {
    for (; j < n; ++j) {
    ....
    }
  }
}
复杂度:O(m*n)
(2.6)O(n)复杂度
 int cal(int n) {
   for (; i <= n; ++i) {
   ....
   }
 }
复杂度:O(n)
3.空间复杂度分析法则
void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}
空间复杂度:O(n)
常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到.
4.复杂度从下到大依次:
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值