数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间?
1.如何理解代码时间复杂度和空间复杂度。
时间复杂度:表示执行的快慢。 公式:T(n)=O(f(n)),T(n) 表示代码执行的时间;n表示数据规模的大小;f(n) 表示每行代码执行的次数总和
空间复杂度:表示内存的消耗。 公式:S(n)=O(f(n)),S(n) 表示代码所需的空间:n为问题的规模,f(n)为语句关于n的所占存储空间
2.时间复杂度分析法则
(2.1)O(1)复杂度
int i = 8;
int j = 6;
int sum = i + j;
复杂度:O(1+1+1)->O(1)
(2.2)O(logn)复杂度
i=1;
while (i <= n) {
i = i * 2;
}
复杂度:O(log2n)->O(logn)
(2.3)O(nlogn)复杂度
for(int i=0;i<n;i++){
i=1;
while (i <= n) {
i = i * 2;
}
}
复杂度:O(nlogn)
(2.4)O(m+n)复杂度
int cal(int m, int n) {
for (; i < m; ++i) {
....
}
for (; j < n; ++j) {
....
}
}
复杂度:O(m+n)
(2.5)O(m*n)复杂度
int cal(int m, int n) {
for (; i < m; ++i) {
for (; j < n; ++j) {
....
}
}
}
复杂度:O(m*n)
(2.6)O(n)复杂度
int cal(int n) {
for (; i <= n; ++i) {
....
}
}
复杂度:O(n)
3.空间复杂度分析法则
void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}
空间复杂度:O(n)
常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到.
4.复杂度从下到大依次: