GCD Expectation(zoj 3868 数学+思维)

题目链接:

GCD Expectation

 

题意:

已知一个n个元素的序列,任取一个非空子集({x1,x2,..,xm}),求 [gcd(x1,x2,...,xm)]^{k} 的期望。假设取任一子集的概率相同。最后答案乘以 2^{n}-1 。

 

思路:

定理:任意有n个元素的集合,其非空子集个数为  2^{n}-1  。

因为每种子集概率相同,即都为 \frac{1}{2^{n}-1} ,最后答案 * 2^{n}-1 ,相当于求任意非空子集 [gcd(x1,x2,...,xm)]^{k} 的和。

用 tot[i] 表示 gcd 为 i 的非空子集个数。

我们知道,一个数与它倍数的 gcd 就等于它本身,所以只要知道 i 的倍数的个数 p ,其总共可以有 2^{p}-1 种组合方式。但注意,其 gcd 不一定都等于 i ,因为这些组合中可能有不包含 i 这个数的情况,所以我们要把这些情况减掉,设剩下还有 x 种情况,那么最后答案 ans 就可以 += x*i^{k} 。

而需要减掉的情况的个数等于gcd 为其倍数的非空子集个数,即\sum_{j=2}^{i*j<=Max}tot[j*i] 。

\therefore 从Max -> 1计算tot[i]即可。

 

Code:

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;

const int MAX = 1e6 + 10;
const ll mod = 998244353;

ll n, k;
ll num[MAX];
ll tot[MAX];

ll multiply(ll a, ll b)
{
	ll ans = 1;
	while (b)
	{
		if (b & 1)
		{
			ans = ((ans%mod)*(a%mod)) % mod;
			b--;
		}
		b /= 2;
		a = ((a%mod)*(a%mod)) % mod;
	}
	return ans;
}

int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		memset(num, 0, sizeof(num));
		memset(tot, 0, sizeof(tot));
		scanf("%lld%lld", &n, &k);
		ll inf = 0;
		for (int i = 0; i < n; i++) {
			ll x;
			scanf("%lld", &x);
			inf = max(inf, x);
			num[x]++;
		}
		ll ans = 0;
		for (int i = inf; i >= 1; i--) {
			ll p = 0;
			for (int j = i; j <= inf; j += i) {
				p += num[j];
				tot[i] = (tot[i] - tot[j] + mod) % mod;
			}
			tot[i] = (tot[i] + multiply(2, p) - 1 + mod) % mod;
			ans = (ans + tot[i] * multiply(i, k) % mod) % mod;
		}
		printf("%lld\n", ans);
	}
	return 0;
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值