Poj1320佩尔方程见数论书115或者110页(暴力求解)

佩尔方程:

设d是正整数,且非平方数。

  下面的不定方程称为佩尔(Pell)方程

  x^2-dy^2=1……①

  ①一定有无穷多组正整数解

  这是初等数论中最经典的内容之一。

  假设(x_0,y_0)是①中使x+y^0.5最小的解(称为①的基本解), 那么①的所有的正整数解可写为

  x_n=1/2[(x_1+y_1d^0.5)^n+(x_1-y_1d^0.5)^n]

  y_n=1/(2d^0.5)[(x_1+y_1d^0.5)^n-(x_1-y_1d^0.5)^n]

  ∴x_n+y_n*(d)^0.5=(x_0+y_0*(d)^0.5)^(n+1)

  且不难导出x_n,y_n满足的线性递推关系

  x_n=2x_1x_(n-1)-x_(n-2)

  y_n=2x_1y_(n-1)-y_(n-2)

  佩尔方程与连分数二次型代数数域等等都有密切联系。

  在一般的函数域上,我们也有类似的佩尔方程, 它和向量丛稳定性有着微妙的关系。

  以上的公式就是Pell方程的一般形态.

poj1320 题意

可以理解为:1+2+……+n=(n+1)+......+m

化简后为

x^2-8y^2=1 典型佩尔方程

一直x1=3 ,y1=1

迭代可以为

x(n+1)=3xn+8yn

y(n+1)=xn+3yn

#include<iostream>
using namespace std;
int main()
{
	int x,y,x1,y1,px,py,d;
	x1=3;
	y1=1;
	px=3;
	py=1;
	for(int i=1;i<=10;i++)
	{
		x=px*x1+8*py*y1;
		y=px*y1+py*x1;
		printf("%10d%10d\n",y,(x-1)/2);
		px=x;
		py=y;
	}
	return 0;
} 


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值