此题我一开是想想dp【i】【j】表示从i位置到j位置最少变换次数。但是我不知到怎么处理中间过程。即我要如何变换才知道是已经变到当前状态来
也就是说 我二维的情况存不下我前面的子状态。然后搜了下网上的题节:http://blog.csdn.net/hyogahyoga/article/details/7886416
其实如果a串是空串的话,我们可以写出这样的区间dp方程:设dp[i][j]表示从i到j至少要变多少次,则有dp[i][j]=min(dp[i+1][j]+(b[i]==b[j]?0:1),dp[i+1][k]+dp[k+1][j](b[i]==b[k]))。
然后再考虑a串,设f[i]表示使a[0]~~a[i]==b[0]~~b[i]的最小步数,则有f[i]=min(f[j]+dp[j+1][i],dp[0][i],f[i-1](当a[i]==b[i]时)),即[j+1,i]可以看做一个空串。