欢迎移步到我的个人博客
题目要求
A sequence of numbers is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A subsequence slice of that array is any sequence of integers (P0, P1, …, Pk) such that 0 ≤ P0 < P1 < … < Pk < N.
A subsequence slice (P0, P1, …, Pk) of array A is called arithmetic if the sequence A[P0], A[P1], …, A[Pk-1], A[Pk] is arithmetic. In particular, this means that k ≥ 2.
The function should return the number of arithmetic subsequence slices in the array A.
The input contains N integers. Every integer is in the range of -231 and 231-1 and 0 ≤ N ≤ 1000. The output is guaranteed to be less than 231-1.
Example:
Input: [2, 4, 6, 8, 10]
Output: 7
Explanation:
All arithmetic subsequence slices are:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]
Subscribe to see which companies asked this question
题意解析
这道题的含义就是找出数列中所有3个数以上的等差数列的数量。
解法分析
使用动态规划来解这道题。假设dp[i][j]表示以A[i]结尾的子序列(P0, P1, …, Pi)构成的数列,序列中的元素之差为j。而dp[i][j]=dp[k][j]>0?dp[k][j]+1:1,0<=i
解题代码
public int numberOfArithmeticSlices(int[] A) {
int re = 0;
HashMap<Integer, HashMap<Long, Integer>> diffMaps = new HashMap<>();
for (int i = 0; i < A.length; i++) {
HashMap<Long, Integer> diffMap = new HashMap<>();
diffMaps.put(i, diffMap);
int num = A[i];
for (int j = 0; j < i; j++) {
if ((long) num - A[j] > Integer.MAX_VALUE)
continue;
if ((long) num - A[j] < Integer.MIN_VALUE)
continue;
long diff = (long) num - A[j];
int count = diffMaps.get(j).getOrDefault(diff, 0);
diffMaps.get(i).put(diff, diffMaps.get(i).getOrDefault(diff, 0) + count + 1);
re += count;
}
}
return re;
}

本文介绍了一种利用动态规划解决等差数列子序列计数问题的方法,并提供了一个具体的解题实例。通过构建动态规划表格,算法可以高效地找出给定数组中所有的等差子序列。
1229

被折叠的 条评论
为什么被折叠?



