[2016,CVPR] Learning Deep Feature Representations with Domain Guided Dropout for Person Re-id

该研究提出了一种名为Domain Guided Dropout (DGD) 的方法,用于解决行人再识别问题中的领域适应。通过联合单一任务学习目标(JSTL)整合多个领域的数据进行训练,然后利用DGD层在每个领域进行微调。实验表明,这种方法尤其对小规模数据集有显著改善,减少了过拟合并提高了识别性能。
摘要由CSDN通过智能技术生成

Authors

Tong Xiao,Hongsheng, Li Wanli Ouyang, Xiaogang Wang
CUHK
CVPR2016的arXiv版

Sources

源码: https://github.com/Cysu/person_reid

Motivation

做multi-domain的想法还是比较直接和自然的,并且这个想法不局限于re-id问题,其它几乎所有领域都有这样的需求。
这篇文章一句话概括就是在做domain adaption。

Approach

  1. 将所有domain的数据和标签混合到一起,构建一个大的综合的数据库,进行以recognition为目标(single softmax loss)的网络训练。这里就假定所有domain的数据不重合吧。这一步叫做JSTL (jointly with a single-task learning objective)。
  2. 对每一个domain的数据进行前项传播(forward pass),计算fc7(特征层)每个neuron的impact score,也即每个domain我们都有一个impact score vector,vector的维度和fc7保持一致,它决定了fc7的每个neuron的值是保留还是舍去或者乘以一定的概率。训练和测试都有这个过程。
  3. 用本文提出的Domain Guided Dropout layer (DGD)替代原来的dropout layer,进行finetune (FT)。

第1步是贡献之一,但是没什么好说的,网络结构如下:
这里写图片描述
注意batch并没有针对小库做balance

Note that we do not balance the data from multiple sources in a mini-batch, as it would give more weights on smaller datasets, which leads to severe overfitting.

第2步是另一个贡献,impact score的定义如下:
这里写图片描述
其中 L 是损失函数,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值