Authors
Tong Xiao,Hongsheng, Li Wanli Ouyang, Xiaogang Wang
CUHK
CVPR2016的arXiv版
Sources
源码: https://github.com/Cysu/person_reid
Motivation
做multi-domain的想法还是比较直接和自然的,并且这个想法不局限于re-id问题,其它几乎所有领域都有这样的需求。
这篇文章一句话概括就是在做domain adaption。
Approach
- 将所有domain的数据和标签混合到一起,构建一个大的综合的数据库,进行以recognition为目标(single softmax loss)的网络训练。这里就假定所有domain的数据不重合吧。这一步叫做JSTL (jointly with a single-task learning objective)。
- 对每一个domain的数据进行前项传播(forward pass),计算fc7(特征层)每个neuron的impact score,也即每个domain我们都有一个impact score vector,vector的维度和fc7保持一致,它决定了fc7的每个neuron的值是保留还是舍去或者乘以一定的概率。训练和测试都有这个过程。
- 用本文提出的Domain Guided Dropout layer (DGD)替代原来的dropout layer,进行finetune (FT)。
第1步是贡献之一,但是没什么好说的,网络结构如下:
注意batch并没有针对小库做balance
Note that we do not balance the data from multiple sources in a mini-batch, as it would give more weights on smaller datasets, which leads to severe overfitting.
第2步是另一个贡献,impact score的定义如下:
其中 L 是损失函数,