归并排序求数组中的逆序对

数组中的逆序对

Problem Description

给定一组数,其中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

Input

首先输入数据组数T(1<=T<=100)
每组测试数据包括两行: 
第一行包含一个整数n,表示数组中的元素个数。其中1 <= n <= 10^5。
第二行包含n个整数,每个数组均为int类型。

Output

对应每组测试数据,输出一个整数,表示数组中的逆序对的总数。注意,结果比较大,请用long long!

Sample Input

1
4
7 5 6 4

Sample Output

5
<strong>#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
long long sum;
int a[100010];
void merge(int *a,int l,int mid,int r)
{
    int n1=mid-l+1;
    int n2=r-mid;
    int *L=new int[n1+1];
    int *R=new int [n2+1];
    int i,j,k;
    for(i=0; i<n1; i++)
    {
        L[i]=a[i+l];
    }
    for(j=0; j<n2; j++)
    {
        R[j]=a[j+mid+1];
    }

    for(i=0,j=0,k=l; k<=r&&i<n1&&j<n2; k++)
    {
        if(L[i]<=R[j])
        {
            a[k]=L[i++];
        }
        else
        {
            sum+=(n1-i);
            a[k]=R[j++];

        }
    }
    if(i>=n1)
    {
        while(k<=r)
        {
            a[k++]=R[j++];
        }
    }
    else
    {
        while(k<=r)
        {
            a[k++]=L[i++];
        }
    }
    delete []L;
    delete []R;
}
void merge_sort(int *a,int l,int r)
{
    if(l<r)
    {
        int mid=(l+r)>>1;
        merge_sort(a,l,mid);
        merge_sort(a,mid+1,r);
        merge(a,l,mid,r);
    }
}
int main()
{
    int n,t;
    while(~scanf("%d",&t))
    {
        while(t--)
        {
            sum=0;
            scanf("%d",&n);

            for(int i=0; i<n; i++)
            {
                scanf("%d",&a[i]);
            }
            merge_sort(a,0,n-1);
            printf("%lld\n",sum);
        }
    }
    return 0;
</strong>
主要思想:用归并把数组从小到大排序;当R[j]<L[i]时;必然有N1-i个逆序数;总计即可;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值