3 分钟了解 AI Agent(智能体)基础篇

前言

AI Agent(人工智能代理 / 智能体)绝对是 2024 上半年一个爆火的话题。从 Google Trends 图中可见一斑。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

尤其是在中国区,不得不说是真的卷,直接干到了100,是第二名的近10倍。

我最近花费了大量的时间进行学习与研究,期间也在智能体开发平台成功搭建了一些有趣的 AI Agent,所以也算是有点发言权了。

为了让大家不要掉队,希望通过本篇文章分享一些心得体会,如果觉得有收获不要忘记转发给身边的人。

AI Agent 的定义

AI Agent,在人工智能领域,通常用来指代「感知、理解、决策和执行于一体」的智能系统或智能应用。

进行指挥和决策的「大脑」可以由各类 LLM(大语言模型)充当,基于 LLM,计算机程序能够独立思考、调用工具来逐步完成给定目标。

现在大家普遍混淆的概念集中于 AI Agent 和 LLM、RAG 等,以及他们之间的关系。接下来就一起再回顾下这些概念,以便更好理解。

1. LLM

LLM「Large Language Model」,即大型语言模型。这类模型是利用深度学习技术,特别是变换器(Transformer)架构,训练出的能够理解和生成自然语言文本的人工智能系统。

它们通常需要大量的数据来训练,以学习语言的模式和结构,从而能够执行诸如文本翻译、摘要、问答、文本生成等多种语言处理任务,例如我们常接触的 ChatGPT、Kimi、文心一言、通义千问等等。

上面提到模型是提前训练好的,所以时效性不强,最新的消息他都无法回答;加上用于训练的内容一般来源于公开的标准化知识,所以无法个性化定制回答。

为了解决上述问题,需要把外部的知识提供给模型,这时候就需要用到 RAG 技术。

2. RAG

RAG「Retrieval-Augmented Generation(检索增强生成)」,是一种结合了检索和生成技术的模型,它通过引用外部知识库的信息来生成答案或内容。RAG 的优势在于其通用性强、可实现即时的知识更新,以及通过端到端评估方法提供更高效和精准的信息服务。

其工作原理包括三个关键部分:检索、利用和生成。在检索阶段,系统会从文档集合中检索相关信息;在利用阶段,系统会利用这些检索到的信息来填充文本或回答问题;最后在生成阶段,系统会根据检索到的知识来生成最终的文本内容。

3. AI Agent 与 LLM、RAG

AI Agent 利用「规划」可将问题进行拆解,形成一个一个的小问题,并定义好这些小问题之间的逻辑关系。然后按照顺序,调用 LLM 、RAG 等外部「工具和记忆」,来解决每一个小问题,直至解决最初的问题,完成一整个「行动」。

AI Agent的架构

作为一个完整的智能体,不光需要「大脑」,还需要如「神经感官系统」以及「四肢」的参与,此时就得涉及到 AI Agent 的架构。

AI Agent = AI 大模型(LLM)+ Planning(规划)+ Momory(记忆)+ Tools(工具)+ Action(行动),接下来逐一解释。

1. Planning(规划)

类比人类,我们如何「规划」一个任务:

1. 首先会把任务分析、拆解成多个子任务;

2. 接着寻找高效的工具帮助完成每个子任务;

3. 过程中持续进行反思,以持续完善;

4. 判断任务是否达到终止条件。

在大模型中,可以通过 Prompt 中运用 CoT 等推理模式,对任务进行拆解,一步步思考和解决,从而使输出的结果更加准确。

2. Momory(记忆)

智能体分为了两种记忆机制:

短期记忆,即单次对话中的上下文。会被短暂储存,以用于后续对话,重新开启对话框就不会存在。

长期记忆,即用户的特征信息、业务信息。通常会记录在向量数据库中进行长期存储,以便于快速检索。

3. Tools(工具)

「工具」便充当从周边环境获取信息,或者把处理结果具体落实下去。比如通过特定系统的 API,获取到指定数据,以及系统的某些操作权限。

比如图中这些例子,可以看到必应搜索、链接读取等是拓展了信息输入的渠道;而飞书云文档、表格等就是增强了处理结果的输出能力。

4. Action(行动)

智能体基于上述提到的点来与外部世界进行互动,抽象简化就是提供一个输入(Input)来产生输出(Output)。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值