现在大模型可谓是满天飞, 只要你稍微关注时下的AI资讯, 几乎每天都有新的AI大模型出现. 这之中当然有诸如GhatGPT, Gemini这样的私有化大模型, 更吸引人关注的可能是开源的可私有化部署的一些大模型. 比如Meta前两天开放的Lamma 3, Google的Gemma开源模型, 国内也有Qwen以及YI等.
前排提示,文末有大模型AGI-CSDN独家资料包哦!
无论私有的大模型, 还是开源的可私有化部署的大模型, 各有优缺点. 相对而言, 一些开源的可私有化部署的大模型, 可能更令人关注. 因为只要有足够的硬件资源, 你就能私有化部署这些大模型.
今天我就介绍几种常见的, 方便的私有化大模型的方式, 这些方式都是开源或免费的.
私有化部署方式
- Ollama
要说私有化部署大模型最方便的方式, 我认为非Ollama莫属了.
相较于其它一些方式, 有一定的编程或技术上的门槛, Ollama可以说是把本地部署大模型这个以前有点技术含量或难度的事情完全傻瓜化了.
就算你是一个编程的门外汉, 都可以轻松的使用Ollama来部署一个本地大模型.
我在这里以最新的Llama 3来举例说明如何运行一个本地大模型. 只要你从Ollama的官网下载并安装了Ollama之后, 就可以极其方便的部署及运行一个大模型
代码语言:javascript
# 拉取llama 3大模型
ollama pull llama3
# 运行
ollama run llama3
运行后, 你可以在SHELL界面上直接和它交互. 并且它也提供了类似OPENAI风格一致的API.
代码语言:javascript
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"stream": false,
"messages": [
{
"role": "user",
"content": "你好, 大模型"
}
]
}'
它的响应如下:
代码语言:javascript
{
"model": "llama3",
"created_at": "2024-04-21T10:00:17.951508Z",
"message": {
"role": "assistant",
"content": "😊 你好!我是大模型,欢迎你来到我的世界!我可以回答你的问题,聊天,生成文本,甚至做一些小游戏。想知道什么?💬"
},
"done": true,
"total_duration": 4032149334,
"load_duration": 3262834,
"prompt_eval_count": 10,
"prompt_eval_duration": 417089000,
"eval_count": 44,
"eval_duration": 3607605000
}
看到没, 没有比Ollama更简单的了. 就算仅仅是个人使用, 如果你是M1或以上的芯片, 或有类似4090消费级显卡, 在本地运行一个llama 3 8B或Gemma 7B这样的开源模型, 是非常方便, 响应速度也比较快.
Ollama支持非常多的开源大模型, 无论是国外主流的, 还是国内的QWEN或YI, Ollama都完全支持. 相比较其它很多类似工具只支持Linux, Ollama支持MAC, WINDOWS及Linux.
如果仅仅是要部署一个本地大模型, 没有比Ollama更简单方便的方式了.
- VLLM
Vllm是一个python类库, 在知道与了解Ollama之前, 最开始我都是基于VLLM来部署类似的开源大模型.
当然, 相比较与Ollama这样的傻瓜式工具, VLLM就有一定的门槛.
它是一个python类库, 部署它意味着你至少得具有一定的编程或运维能力. 你得安装一个python环境, 最好搭配Conda一起来部署.
安装与运行vllm
代码语言:javascript
# 用conda创建一个独立的环境, 以避免依赖冲突
conda create -n myenv python=3.9 -y
conda activate myenv
# Install vLLM with CUDA 12.1.
pip install vllm
同样, 它也支持使用OPENAI类似REST风格来提供服务.
- Llama.cpp
Llama.cpp也非常有名, 它是一个纯C/C++实现的工具, 因此具有较好的性能表现.
Llama.cpp与VLLM一样, 都有一定的门槛, 没有一定的编程经验, 可能很难用它成功部署一个开源的大模型.
相较于VLLM, Llama.cpp的优点在于它支持更多的平台.
并且由于它早期非常有名, 有很多现成的风格类似ChatGPT的开源WEB UI支持.
- Hugging Face
程序员都知道, 当谈论开源时, 默认就会想到Github, 世界上最大的开源仓库. 同样, 关注开源大模型时, Hugging Face的地位等同于Github.
虽然国内可能也有魔搭社区这样的类似的社区. 但差距还是非常明显的.
Hugging Face不只是一个单纯的大模型数据存储仓库, 更重要的是它提供的类库, 诸如Transformers等. 几乎是开源AI编程的事实上的标准类库.
如果你想编程式的部署与使用一些开源的大模型, 那使用Hugging Face提供的类库, 当前几乎是唯一的选择.
- GPTAll
和前面几种方式不同的在于, GPTAll是一个有UI的AI应用程序. 支持Windows, MacOS以及Ubuntu等.
它简单易于操作, 你只需要在UI上点击操作, 就能下载运行一个本地模型.
当然, 这个工具更多的是面向个人使用的. 如果你想一个可以在本地运行聊天的软件, 这个软件是你可以考虑的好工具.
总结
开源大模型, 或者说本地化运行一个开源大模型, 现在已经越发的简单与低门槛了. 只要有足够的GPU硬件, 本地化部署与运行开源大模型非常简单及易于实现.
想部署一个本地大模型玩玩? 最方便的, 我建议你选择Ollama, 它足够简单, 易于部署与运行. 而且它也有开源的WEB UI或一些软件UI支持. 其它几种方式你也可以按需选择.
今天, 私有化本地部署一个大模型早已不是什么有门槛或技术含量的工作了, 对于那些追赶AI热潮的人来说, 找到AI对你业务实现的价值可能才是更具挑战的事情
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓