机器学习秘籍:探索算法原理
文章平均质量分 96
本专栏旨在为您提供一站式的机器学习学习体验,涵盖了从基本概念、原理到实际应用的全面内容。无论您是对机器学习一无所知的初学者,还是已经具备一定基础的爱好者,我们都将为您提供定制化的学习路径,帮助您迅速掌握这一领域的核心技能。
算法小陈
深耕算法领域五载,我是一名专业的算法工程师,掌握机器学习、深度学习以及自然语言处理技术。多年的实战经验磨炼出我独特的技术洞察力和问题解决能力。我专注于将复杂的概念提炼为易于理解的内容,无论面对技术难题还是学术挑战,我始终坚信智慧与创新能找到优雅的解决之道。我的专业知识和技术实力都在默默的言传身教中,透露出我对这个领域的热爱和执着。
展开
-
机器学习(十八):Bagging和随机森林
本文深入探讨了集成学习及其在随机森林中的应用。对集成学习的基本概念、优势以及为何它有效做了阐述。随机森林,作为一个集成学习方法,与Bagging有紧密联系,其核心思想和实现过程均在文中进行了说明。还详细展示了如何在Sklearn中利用随机森林进行建模,并对其关键参数进行了解读,希望能帮助大家更有效地运用随机森林进行数据建模。原创 2023-08-09 10:32:10 · 1865 阅读 · 4 评论 -
机器学习(十七):实操_在Sklearn中的实现CART树的基本流程
本篇文章主要介绍了在Sklearn库中实现CART分类树和回归树的基本流程。详解了CART分类树的各个参数,包括模型评估类参数、树结构控制类参数以及迭代随机过程控制类参数,并给出了在Sklearn中调用CART分类树的实例。其次,阐述了CART回归树的建模流程和criterion参数的不同取值,也同样提供了Sklearn的调用示例。原创 2023-07-17 15:49:49 · 1090 阅读 · 0 评论 -
机器学习(十六):决策树
在这篇文章中,详细介绍了决策树的基本概念、构建及生长过程。对分类规则评估指标,包括分类误差、信息熵和基尼系数的计算及其作用做了介绍。最后,深入分析了三种主要的决策树算法:ID3、C4.5和CART,以及它们的建模流程。希望能帮助到大家对决策树有一个清晰的理解。原创 2023-07-14 16:05:39 · 3943 阅读 · 1 评论 -
机器学习(十五):超参数调优高阶_贝叶斯优化(附代码)
这篇文章解释了超参数优化的高阶内容 -- 贝叶斯优化的基本原理和流程,并对三种主流的贝叶斯优化库——Bayes_opt、HyperOpt 和 Optuna进行了实操演示,希望通过本文,大家能真正理解到贝叶斯优化的工作原理和如何用它来求解函数的最小值,并且学会在超参数优化任务中如何实际应用贝叶斯优化。原创 2023-07-12 15:00:27 · 6339 阅读 · 6 评论 -
机器学习(十四):超参数调优进阶_RandomizedSearchCV和HalvingSearchCV
本文从理论角度分析了传统的枚举网格搜索的局限性,介绍了两种更加高效的超参数搜索方法:RandomizedSearchCV和HalvingSearchCV。详解了它们的工作原理,参数设置以及使用场景,并通过具体的Kaggle比赛案例,帮助读者更直观地理解这两种方法的优势与局限性。阅读完本篇文章后,您应该能够掌握到RandomizedSearchCV和HalvingSearchCV的基本概念和工作原理,并能够在具体的机器学习问题中,根据自身的需求和计算资源的限制,选择和使用合适的超参数搜索方法。此外,还将学原创 2023-07-11 18:02:13 · 2147 阅读 · 1 评论 -
机器学习(三):实操线性回归案例_实现设备产能预测
在这篇文章中,我们将深入探讨如何在实际中应用数据科学和机器学习的方法,特别是线性回归模型。首先,我们会对一个设备性能数据集进行详细的脱敏处理,以确保数据使用的安全性。这个过程中,我们将使用Python的Pandas库来进行数据处理。然后,我们将进行数据预处理,包括数据探索、数据清洗、数据探索性分析,以及特征选择。在这个过程中,我们将介绍并实践计算变量相关性和处理多重共线性等重要概念。之后,我们将使用这份脱敏和预处理后的数据,建立一个线性回归模型,以预测设备在给定条件下的性能。这个过程包括数据准备、模型选原创 2023-05-23 13:14:36 · 1106 阅读 · 3 评论 -
机器学习(十三):超参数调优入门_枚举网格搜索
在这篇文章中,讲解了机器学习中的超参数调优问题,特别是如何运用网格搜索和交叉验证来寻找最优的模型参数。通过阅读此文,你应该掌握了手动与自动调参的差异,调参与模型过拟合和欠拟合的关系,如何定义和构建参数空间,以及如何使用Scikit-Learn进行网格搜索。这些知识将帮助你更有效地优化机器学习模型的性能和泛化能力原创 2023-07-07 10:32:25 · 968 阅读 · 3 评论 -
机器学习(十二):正则化与过拟合(附代码实例)
本文深入探讨了过拟合、欠拟合及其平衡,理解了正则化的基本概念并展示了其在防止过拟合中的作用。我们通过实验验证了正则化(如岭回归、Lasso回归)在缓解过拟合和提高模型泛化能力上的有效性。总结来说,正则化是一种强大的工具,能帮助我们构建出在未知数据上表现良好的模型。原创 2023-07-05 13:33:58 · 1488 阅读 · 0 评论 -
机器学习(十一):Scikit-learn库的基础与使用
详细解释了Scikit-learn的一些基础用法,包括它的定义、安装、核心对象类型(评估器)和关键特性(如数据预处理,数据集切分,数据标准化和归一化),并学习了如何实现线性回归模型,包括了解超参数的概念,以及如何保存和加载模型,希望通过本文,能帮助大家对Scikit-learn有一个更深入的认识。原创 2023-07-03 16:45:25 · 13421 阅读 · 5 评论 -
机器学习(十):分类模型的评估指标
本文全面探讨了分类模型的多种评估指标,包括准确率、精确度、召回率、F1分数,混淆矩阵,以及ROC曲线和AUC值。原创 2023-06-30 17:12:24 · 1080 阅读 · 1 评论 -
机器学习(九):学习率与学习率调度
在这篇文章中,探讨了学习率以及学习率调度策略的基本概念,以及其对于梯度下降优化算法的重要性。学习率调度策略与随机或小批量梯度下降的结合使用,可以在保证模型收敛的同时,提高训练的效率和最终模型的性能。原创 2023-06-26 12:24:50 · 681 阅读 · 0 评论 -
机器学习(八):梯度下降优化_数据归一化
本篇文章深入探讨了数据归一化在机器学习,特别是在优化梯度下降算法中的重要性。详细介绍了最常用的两种数据归一化技术——0-1标准化和Z-score标准化,并讨论了它们各自的特性。通过具体的案例展示了归一化如何影响梯度下降的迭代过程,以及如何通过改善梯度下降的收敛性能,从而提高模型的训练效率和性能。原创 2023-06-25 13:25:46 · 563 阅读 · 2 评论 -
机器学习(七): Bias、Error和Variance的区别与联系
这篇文章首先介绍了基础概念,包括偏差(Bias)、方差(Variance)和误差(Error),每个概念的定义和详细解析。然后,深入探讨了偏差,方差以及误差之间的关系,特别强调了偏差-方差权衡的概念,提供了相关的数学推导,并进行了深入解析。这篇文章旨在帮助读者更好地理解偏差,方差,误差之间的关系,并了解如何在机器学习模型中平衡这些因素原创 2023-06-19 10:05:54 · 10418 阅读 · 0 评论 -
机器学习(六):梯度下降
们深入讨论了逻辑回归中的关键优化技术——梯度下降,及其主要变体:批量梯度下降、随机梯度下降和小批量随机梯度下降。该文连接了系列前两篇文章的理论基础,解释了为何需要引入梯度下降等优化方法,并详细讲解了这些方法的工作原理、优劣势及其在不同应用场景中的表现。原创 2023-06-15 14:06:57 · 1189 阅读 · 0 评论 -
机器学习(五):极大似然估计与交叉熵损失函数
在本篇文章中,我们深入探讨了逻辑回归的核心概念:极大似然估计和交叉熵损失函数。我们通过实例逐步解释了如何从这两种不同的角度来推导出逻辑回归的损失函数,并实现了整个过程的详细数学推导。 尽管这两种方法的出发点和推导过程不同,但它们都是以最大化样本数据似然性或最小化预测与真实标签之间的差异为目标,从而得到最优的模型参数。这不仅揭示了不同统计学习方法的内在联系,也让我们对逻辑回归模型有了更深入的理解。原创 2023-06-12 11:07:28 · 1067 阅读 · 1 评论 -
机器学习(四):逻辑回归的理论基础
本文深度探讨了逻辑回归的理论基础和计算过程。首先,我们从广义线性模型的视角出发,通过探讨线性回归和正态分布,介绍了广义线性模型的定义。然后,我们通过对数几率的视角理解逻辑回归,并推导出了逻辑回归标准形式。在此基础上,我们详细介绍了逻辑函数(Sigmoid函数)及其性质,包括其一阶导数的推导,逻辑函数的图像,以及逻辑函数的性质。最后,我们模拟实现了逻辑回归的计算过程,通过可视化对比展示了线性回归与逻辑回归的区别。原创 2023-06-09 09:40:49 · 955 阅读 · 1 评论 -
机器学习(二):线性回归的理论基础与最小二乘法实践
在这篇文章中,我们深入探索了线性回归的基本理论和应用,解释了其基本概念、基本假设以及线性回归模型。此外,我们还详细介绍了机器学习建模的一般流程,包括提出基本模型、选择损失函数和选择优化方法。最后,我们利用最小二乘法详解了如何求解多元线性回归,通过构建表格的示例,提供了具体的代码实现。这篇文章旨在帮助读者理解和掌握线性回归模型和最小二乘法,为未来的机器学习项目打下坚实的理论基础。原创 2023-05-15 17:52:14 · 1146 阅读 · 0 评论 -
机器学习(一):理解机器学习相关概念
本文提供了一个关于机器学习入门的全面指南,内容包括Python的安装与环境配置,机器学习的概念、发展历程和应用场景。文章还对比了经典统计分析与机器学习的区别,并详细讲述了数据与数据集的概念。我们根据学习方式和任务类型对模型进行分类,探讨了监督学习、无监督学习、半监督学习、强化学习等机器学习方法,同时介绍了分类、回归、聚类和降维等任务。最后,概述了机器学习建模的一般流程。本文为您搭建了一个扎实的机器学习基础,助您在智能时代中更好地掌握未来科技趋势。原创 2023-05-06 17:28:26 · 1174 阅读 · 3 评论