AI前线:AIGC与大模型的应用实例
文章平均质量分 96
本专栏致力于探索和分享人工智能大模型的部署方法,以及各类AI工具的实际应用。我们将一起深入AIGC(AI Grand Challenges)的世界,探讨最前沿的AI技术和挑战。从基础入门,到深度研究,本专栏将为你提供关于AIGC的全方位解析。无论学习还是升级加薪,绝对是强大的助推器。期待大家的加入
算法小陈
深耕算法领域五载,我是一名专业的算法工程师,掌握机器学习、深度学习以及自然语言处理技术。多年的实战经验磨炼出我独特的技术洞察力和问题解决能力。我专注于将复杂的概念提炼为易于理解的内容,无论面对技术难题还是学术挑战,我始终坚信智慧与创新能找到优雅的解决之道。我的专业知识和技术实力都在默默的言传身教中,透露出我对这个领域的热爱和执着。
展开
-
OpenAI开发系列(二):大语言模型发展史及Transformer架构详解
大语言模型发展史及Transformer架构详解原创 2023-09-14 17:05:54 · 5125 阅读 · 3 评论 -
大模型开发工程师技术栈(此篇文章持续更新)
大模型开发工程师进阶学习路线系列原创 2023-08-09 17:17:28 · 3588 阅读 · 1 评论 -
大模型开发(十六):从0到1构建一个高度自动化的AI项目开发流程(中)
本文作为构建高度自动化AI项目开发流程的第二步优化,通过LtM提示流程,解决了根据用户需求,自动构建符合要求的函数,并通过示例一步一步的完整测试了code_generate函数功能。原创 2023-08-03 09:20:03 · 2925 阅读 · 5 评论 -
OpenAI开发系列(十五):AI敏捷开发的新范式:利用大模型优化和自动化应用开发流程(上)
本文目标:提出一种利用大语言模型(LLMs)加快项目的开发效率的解决思路,本文作为第一部分,主要集中在如何完整的执行引导Chat模型创建外部函数代码、代码管理以及测试的全部流程。对于AI开发流程来说,还需要更多的探索和要求需要借助AI介入,将大语言模型应用于软件开发流程以提高软件开发效率,本身也是大语言模型目前非常热门的应用方向**。大语言模型强悍的人类意图理解能力和代码编写能力,会使开发工程师能够在大语言模型的加持下大幅提高开发效率。原创 2023-08-01 09:07:33 · 2133 阅读 · 0 评论 -
OpenAI开发系列(十四):通过Google API赋能大模型,打造智能邮件助理
本文为读者提供了一个结合OpenAI的Chat模型和Google API来开发智能邮件应用程序的详细教程。这一方法不仅展示了如何将两种强大的工具相结合,还提供了具体的代码示例和开发流程。Google API在应用开发中提供了许多强大的功能,结合OpenAI的Chat模型,开发者可以创建出更为强大和智能的应用。在本文中,作者展示了如何利用这些工具开发一个AI应用程序,该程序可以智能地收发邮件。总的来说,这篇文章为那些希望开发基于Google API的AI应用程序的开发者提供了一个详细的教程和实例,有助原创 2023-07-29 10:09:25 · 1269 阅读 · 0 评论 -
OpenAI开发系列(十三):利用Function calling功能开发基于大模型的实时天气查询助手
本篇文章讲述了如何在OpenWeather注册并获取API key,同时解释了什么是外部工具API以及OpenWeatherAPI的基本介绍。之后,详解了OpenWeather API的使用方法,包括API功能说明、计费规则以及实时天气查询API的调用方法。在此基础上,展示了如何使用Function calling来实现Chat模型的实时天气查询,最后介绍了如何使用Few-shot提示来优化函数。此内容为实现Function calling调用外部工具API,具有参考和启发价值。原创 2023-07-26 10:42:52 · 2468 阅读 · 0 评论 -
OpenAI开发系列(十二):Function calling功能的流程优化与多轮对话实现
本文首先概述了Function calling流程的优化思路,接着分别详细介绍了两种主要的优化方法:自动编写函数和编写自动应答函数。这两种优化方法可以显著提高Function calling的效率和实用性。最后,演示了如何实现一个多轮对话函数。原创 2023-07-25 10:31:54 · 3594 阅读 · 2 评论 -
OpenAI开发系列(十一):Function calling功能的实际应用流程与案例解析
本文给出了Chat Completions模型中Function calling功能的背景,然后详细讲解了Function calling的实现过程。这包括如何构建Chat外部函数库,包括字符串形式、Json形式和函数形式的传入,还解释了如何定义functions,包括JSON与JSON Schema对象和构建外部函数的Json Schema描述。最后,对Function calling的功能实现进行了详细介绍,并对整个流程进行了总结,提供了全面且深入的理解和应用Function calling功能的指导。原创 2023-07-24 11:25:41 · 5748 阅读 · 4 评论 -
# OpenAI开发系列(十):Chat Completion Models API详解与构建本地知识库问答系统实践
文章从介绍Chat Completion Models开始,阐述了其与Completions Models的关系及其发展历程。深入解读了Chat Completions Model API,包括调用示例及参数详解。在此基础上,专门对messages参数进行了详解,包括参数结构,以及message中的角色划分。并且,提供了丰富的message参数应用实例,如借助多轮user-assistant消息进行few-shot,使用system role进行Few-shot,输入提示模板,设置聊天背景信息,以及使用.a原创 2023-07-23 13:46:00 · 6315 阅读 · 4 评论 -
OpenAI开发系列(九):LtM提示工程如何用于数据建模
文章从介绍和数据背景开始,分析了SCAN数据集的形式、难度和建模难度。随后,文章详细解构了针对SCAN数据预测的LtM提示流程,包括数据集的下载,以及尝试使用Zero-shot、Few-shot、Zer-shot-LtM的方法。特别关注了使用few-shot-LtM进行复现的过程,其中详细展开了指令拆解和指令翻译的技巧。最后,提供了SCAN数据集的完整预测流程,对于理解和掌握LtM提示工程在实际任务中的应用具有重要价值。原创 2023-07-21 16:25:23 · 1398 阅读 · 4 评论 -
OpenAI开发系列(八):基于思维链(CoT)的进阶提示工程
本篇文章首先引入了四个经典推理问题,然后详细讲解了One-shot与Few-shot提示学习法。核心部分是思维链提示法,包括Zero-shot-CoT提示方法、Few-shot-CoT提示方法,以及CoT的改良方法LEAST-TO-MOST PROMPTING(LtM提示法)。这些深度的内容旨在帮助理解和掌握更加进阶的提示工程技巧,以便在大模型开发中实现更高效的应用和优化。原创 2023-07-19 16:27:34 · 2837 阅读 · 0 评论 -
OpenAI 开发系列(七):LLM提示工程(Prompt)与思维链(CoT)
本文首先揭示了LLM模型的涌现能力,阐述了如何通过提示工程和微调来激发大模型的涌现能力。接着深入讨论了提示工程的各个方面,包括其误区、语言提示工程、代码提示工程,以及多种提示方法,如经典的小样本提示、思维链提示、CoT+Few-shot提示和STaR Fine-Tune提示法。文章最后探讨了模型的推理能力,对于理解和应用LLM模型来说,这些知识都具有重要的参考价值。原创 2023-07-18 20:03:09 · 4208 阅读 · 2 评论 -
OpenAI开发系列(六):Completions模型的工作原理及应用实例(开发多轮对话机器人)
文章详细阐述了OpenAI的Completions与Chat Completions模型的基本概念与模型类。接着,对Completion.create API进行了深度解析,包括参数详解、代码测试以及参数调参实践,特别是对n、temperature、presence_penalty、best_of等参数的详细讲解。最后,以Completion.create函数为基础,实现了具有可调节对话风格的多轮对话机器人,展现了AI对话系统的灵活性。掌握这些知识,对优化AI对话系统具有重要的指导意义。原创 2023-07-18 10:19:31 · 4911 阅读 · 1 评论 -
OpenAI开发系列(五):实现Jupyter本地环境下的OpenAI API调用
本文对OpenAI的官网结构做了讲解,并对如何使用Jupyter实现本地调用API给出了实现方案原创 2023-07-17 21:46:58 · 2984 阅读 · 0 评论 -
OpenAI开发系列(三):OpenAI的大模型生态介绍
这篇文章为读者提供了关于OpenAI大模型生态的全面了解,详细介绍了多种模型及其特点。对于希望深入了解OpenAI模型和应用的开发者来说,这篇文章提供了宝贵的信息和指南,帮助他们做出明智的选择。原创 2023-07-12 23:14:12 · 2771 阅读 · 3 评论 -
OpenAI开发系列(一):一文搞懂大模型、GPT、ChatGPT等AI概念
揭示了人工智能、大模型、GPT、以及ChatGPT的概念及它们潜在关系。希望这篇文章为你解开了这些概念的纷繁复杂原创 2023-06-27 13:05:26 · 27313 阅读 · 2 评论