转载自:http://blog.csdn.net/lch614730/article/details/17031145
朴素贝叶斯分类算法(Naive Bayesian classification)
(1)什么是朴素贝叶斯(Naive Bayes,以后简称NB)?
由上可知,判别模型与生成模型的最重要的不同是,训练时的目标不同,判别模型主要优化条件概率分布,使得x,y更加对应,在分类中就是更可分。而生成模型主要是优化训练数据的联合分布概率。而同时,生成模型可以通过贝叶斯得到判别模型,但判别模型无法得到生成模型。
首先从bayes公式开头吧
P(C/W) = P(C) * P(W/C) / P(W)
(2)先验概率和条件概率是如何证明的?
(3)文本分类的多项式模型和伯努利模型(附加例子说明)
1、基本定义:
分类是把一个事物分到某个类别中。一个事物具有很多属性,把它的众多属性看作一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物,x的集合记为X,称为属性集。类别也有很多种,用集合C={c1,c2,…cm}表示。一般X和C的关系是不确定的,可以将X和C看作是随机变量,P(C|X)称为C的后验概率,与之相对的,P(C)称为C的先验概率。
根据贝叶斯公式,后验概率P(C|X)=P(X|C)P(C)/P(X),但在比较不同C值的后验概率时,分母P(X)总是常数,忽略掉,后验概率P(C|X)=P(X|C)P(C),先验概率P(C)可以通过计算训练集中属于每一个类的训练样本所占的比例,容易估计,对类条件概率P(X|C)的估计,这里我只说朴素贝叶斯分类器方法,因为朴素贝叶斯假设事物属性之间相互条件独立,P(X|C)=∏P(xi|ci)。
2、文本分类过程
例如文档:Good good study Day day up可以用一个文本特征向量来表示,x=(Good, good, study, Day, day , up)。在文本分类中,假设我们有一个文档d∈X,类别c又称为标签。我们把一堆打了标签的文档集合<d,c>作为训练样本,<d,c>∈X×C。例如:<d,c>={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。
朴素贝叶斯分类器是一种有监督学习,常见有两种模型,多项式模型(multinomial model)即为词频型和伯努利模型(Bernoulli model)即文档型。二者的计算粒度不一样,多项式模型以单词为粒度,伯努利模型以文件为粒度,因此二者的先验概率和类条件概率的计算方法都不同。计算后验概率时,对于一个文档d,多项式模型中,只有在d中出现过的单词,才会参与后验概率计算,伯努利模型中,没有在d中出现,但是在全局单词表中出现的单词,也会参与计算,不过是作为“反方”参与的。这里暂不考虑特征抽取、为避免消除测试文档时类条件概率中有为0现象而做的取对数等问题。
2.1多项式模型
1)基本原理
在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复,则
先验概率P(c)= 类c下单词总数/整个训练样本的单词总数
类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)
V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。 P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)。
2)举例
给定一组分好类的文本训练数据,如下:
docId | doc | 类别 In c=China? |
1 | Chinese Beijing Chinese | yes |
2 | Chinese Chinese Shanghai | yes |
3 | Chinese Macao | yes |
4 | Tokyo Japan Chinese | no |
给定一个新样本Chinese Chinese Chinese Tokyo Japan,对其进行分类。该文本用属性向量表示为d=(Chinese, Chinese, Chinese, Tokyo, Japan),类别集合为Y={yes, no}。
类yes下总共有8个单词,类no下总共有3个单词,训练样本单词总数为11,因此P(yes)=8/11, P(no)=3/11。类条件概率计算如下:
P(Chinese | yes)=(5+1)/(8+6)=6/14=3/7
P(Japan | yes)=P(Tokyo | yes)= (0+1)/(8+6)=1/14
P(Chinese|no)=(1+1)/(3+6)=2/9
P(Japan|no)=P(Tokyo| no) =(1+1)/(3+6)=2/9
分母中的8,是指yes类别下textc的长度,也即训练样本的单词总数,6是指训练样本有Chinese,Beijing,Shanghai, Macao, Tokyo, Japan 共6个单词,3是指no类下共有3个单词。
有了以上类条件概率,开始计算后验概率:
P(yes | d)=(3/7)3×1/14×1/14×8/11=108/184877≈0.00058417
P(no | d)= (2/9)3×2/9×2/9×3/11=32/216513≈0.00014780
比较大小,即可知道这个文档属于类别china。
2.2伯努利模型
1)基本原理
P(c)= 类c下文件总数/整个训练样本的文件总数
P(tk|c)=(类c下包含单词tk的文件数+1)/(类c下单词总数+2)
2)举例
使用前面例子中的数据,模型换成伯努利模型。
类yes下总共有3个文件,类no下有1个文件,训练样本文件总数为11,因此P(yes)=3/4, P(Chinese | yes)=(3+1)/(3+2)=4/5,条件概率如下:
P(Japan | yes)=P(Tokyo | yes)=(0+1)/(3+2)=1/5
P(Beijing | yes)= P(Macao|yes)= P(Shanghai |yes)=(1+1)/(3+2)=2/5
P(Chinese|no)=(1+1)/(1+2)=2/3
P(Japan|no)=P(Tokyo| no) =(1+1)/(1+2)=2/3
P(Beijing| no)= P(Macao| no)= P(Shanghai | no)=(0+1)/(1+2)=1/3
有了以上类条件概率,开始计算后验概率,
P(yes|d)=P(yes)×P(Chinese|yes)×P(Japan|yes)×P(Tokyo|yes)×(1-P(Beijing|yes))×(1-P(Shanghai|yes))×(1-P(Macao|yes))=3/4×4/5×1/5×1/5×(1-2/5) ×(1-2/5)×(1-2/5)=81/15625≈0.005
P(no|d)= 1/4×2/3×2/3×2/3×(1-1/3)×(1-1/3)×(1-1/3)=16/729≈0.022
因此,这个文档不属于类别china。