1329:【例8.2】细胞
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 13978 通过数: 7845
【题目描述】
一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数。如:
阵列
4 10
0234500067
1034560500
2045600671
0000000089
有4个细胞。
【输入】
第一行为矩阵的行n和列m;
下面为一个n×m的矩阵。
【输出】
细胞个数。
【输入样例】
4 10
0234500067
1034560500
2045600671
0000000089
【输出样例】
4
【分析】
这道题数据量不大,可以用广搜或深搜实现,使用广搜,尽量使用C++的队列实现,C语言代码模拟队列要复杂得多。就这道题来讲,题目要找细胞的个数,实际上就是典型的图连通性问题。
【参考代码1】
#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
struct pp // 坐标
{
int x;
int y;
};
queue <pp> q; // 队列
int n,m; // n行m列
int ans=0; // ans为答案
int a[105][105]; // 存矩阵
bool vis[105][105]; // 访问数组
int dx[4]={-1,1,0,0}; // 方向数组
int dy[4]={0,0,-1,1};
void bfs(int sx,int sy)
{
pp st;
// 标记起点
st.x=sx;
st.y=sy;
vis[sx][sy]=1;
q.push(st);
while(!q.empty()) // 队列不为空
{
pp nw=q.front(); // 返回队首
for(int i=0;i<4;i++) // 沿四个方向拓展
{
pp nxt=nw;
// 记录这一方向
nxt.x+=dx[i];
nxt.y+=dy[i];
if(a[nxt.x][nxt.y]==0 || vis[nxt.x][nxt.y]==1) // 不是细胞或访问过
continue;
vis[nxt.x][nxt.y]=1; // 把这一连通块的点染色
q.push(nxt); // 状态入队
}
q.pop(); // 弹出队首
}
}
int main()
{
cin>>n>>m;
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%1d",&a[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(vis[i][j]==0 && a[i][j]!=0) // 未访问过,且是细胞
{
bfs(i,j);
ans++; // 若这一连通块没搜过ans++
}
}
}
cout<<ans;
return 0;
}
【参考代码2】
由于数据量不大,这道题也可以用深搜完成。
#include <stdio.h>
#define N 1000
#define M 1000
int n,m;
int num;
char a[N][M];
int dx[4]={-1,1,0,0}; //上、下、左、右
int dy[4]={0,0,-1,1};
void dfs(int x,int y)
{
int i,j,newx,newy;
a[x][y]='0';
for(i=0;i<4;i++)
{
newx=x+dx[i];
newy=y+dy[i];
if(newx<n && newx>=0 && newy<m && newy>=0)
{
if(a[newx][newy]!='0')
dfs(newx,newy);
}
}
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
getchar();
for(i=0;i<n;i++)
scanf("%s",&a[i]);
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
if(a[i][j]!='0')
{
num++; //遇见一个细胞就加加
dfs(i,j); //去搜索这一点的四个方向
}
}
}
printf("%d\n",num);
return 0;
}