题目描述
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:
输入:lists = []
输出:[]
示例 3:
输入:lists = [[]]
输出:[]
提示:
- k == lists.length
- 0 <= k <= 104
- 0 <= lists[i].length <= 500
- -104 <= lists[i][j] <= 104
- lists[i] 按 升序 排列
- lists[i].length 的总和不超过 104
解题方法
方法一:顺序合并
此方法需要掌握合并两个升序链表的方法。没掌握的童鞋可以先看这篇[leetcode] 21. 合并两个有序链表。
我们用一个head
链表代表当前合并链表,初始为空。每次合并时,我们将head链表与第i
个链表合并。链表数组遍历完成时,head
链表即为最终结果。
java代码
ListNode结构
public class ListNode {
public int val;
public ListNode next;
public ListNode() {
}
public ListNode(int val) {
this.val = val;
}
public ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
合并方法
public ListNode mergeKLists(ListNode[] lists) {
ListNode head = null;
for(int i = 0; i < lists.length; i++) {
head = mergeTwoLists(head, lists[i]);
}
return head;
}
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummyNode = new ListNode(0, null);
ListNode p = dummyNode;
ListNode l1 = list1;
ListNode l2 = list2;
while (l1 != null && l2 != null) {
if (l1.val <= l2.val) {
p.next = l1;
p = p.next;
l1 = l1.next;
} else {
p.next = l2;
p = p.next;
l2 = l2.next;
}
}
if (l1 != null) {
p.next = l1;
} else {
p.next = l2;
}
return dummyNode.next;
}
复杂度分析
时间复杂度:假设每个链表的最长长度是
n
n
n。在第一次合并后,
h
e
a
d
head
head的长度为
n
n
n;第二次合并后,
h
e
a
d
head
head的长度为
2
×
n
2 \times n
2×n,第
i
i
i次合并后,
h
e
a
d
head
head 的长度为
i
×
n
i \times n
i×n。第
i
i
i次合并的时间代价是
O
(
i
×
n
)
O(i \times n)
O(i×n),那么总的时间代价为
O
(
∑
i
=
1
k
(
i
×
n
)
)
=
O
(
(
1
+
k
)
⋅
k
2
×
n
)
=
O
(
k
2
n
)
O(\sum_{i=1}^k(i \times n)) = O(\frac{(1+k)⋅k} {2} \times n)=O(k^2n)
O(∑i=1k(i×n))=O(2(1+k)⋅k×n)=O(k2n),故渐进时间复杂度为
O
(
k
2
n
)
O(k^2n)
O(k2n)。
空间复杂度:只有指针遍历,没有用到与
k
k
k 和
n
n
n 规模相关的辅助空间,故渐进空间复杂度为
O
(
1
)
O(1)
O(1)。
方法二:使用小根堆合并
我们首先将每个链表的头指针添加到小根堆中,此时小根堆中顶部的元素即为所有链表头部最小的元素。第一步,小根堆头部元素出栈,出栈的结点加入到结果链表尾部。第二步,再将出栈结点的下一个结点加入到小根堆中(没有下一个结点则不需要加入),此时小根堆中的顶部元素即为所有链表当前头部的最小元素。然后按照上面的第一步和第二步重复操作,直到小根堆为空,此时得到升序后的结果链表。
java代码
import java.util.PriorityQueue;
public class Solution {
class Status implements Comparable<Status> {
public ListNode node;
public Status(ListNode node) {
this.node = node;
}
@Override
public int compareTo(Status status) {
return this.node.val - status.node.val;
}
}
public ListNode mergeKLists(ListNode[] lists) {
ListNode dummyNode = new ListNode(0, null);
ListNode curNode = dummyNode;
PriorityQueue<Status> minHeap = new PriorityQueue<>();
for (ListNode node : lists) {
if (node != null) {
minHeap.offer(new Status(node));
}
}
while (!minHeap.isEmpty()) {
Status status = minHeap.poll();
curNode.next = status.node;
curNode = status.node;
if (status.node.next != null) {
minHeap.offer(new Status(status.node.next));
}
}
return dummyNode.next;
}
}
复杂度分析
时间复杂度:假设有
k
k
k个链表,则小根堆中的元素不超过
k
k
k,则每次插入和删除元素的时间复杂度为
O
(
l
o
g
k
)
O(logk)
O(logk)。设每个链表最长长度为
n
n
n,则总的渐进时间复杂度为
O
(
k
n
×
l
o
g
k
)
O(kn \times logk)
O(kn×logk)。
空间复杂度:最多有
k
k
k个元素存储在小根堆中,故空间复杂度为
O
(
k
)
O(k)
O(k)。
相似题目
- 个人公众号
- 个人小游戏