JOJ2179:Dividable

传送门:http://acm.jlu.edu.cn/joj/showproblem.php?pid=2179

思路:n ^ k - 1 = (n - 1) * (n ^ (k - 1) + n ^ (k - 2) + ...... + n + 1);

判断n ^ k - 1能否被(n - 1) ^ 2整除,只需判断后面那个式子被(n - 1)整除。

那个式子mod(n - 1)为k,只要判断k的值就行了。

代码:

#include <cstdio>
using namespace std;

int main()
{
    int n, m;
    while (scanf("%d%d", &n, &m) != EOF)
    {
        if (m % (n - 1) == 0)
            printf("yes\n");
        else
            printf("no\n");
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值