[Wc2007]剪刀石头布
Time Limit: 20 Sec
Memory Limit: 128 MB
Sec Special Judge
Description
在一些一对一游戏的比赛(如下棋、乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况。有的时候,无聊的人们会津津乐道于统计有多少这样的剪刀石头布情况发生,即有多少对无序三元组(A, B, C),满足其中的一个人在比赛中赢了另一个人,另一个人赢了第三个人而第三个人又胜过了第一个人。注意这里无序的意思是说三元组中元素的顺序并不重要,将(A, B, C)、(A, C, B)、(B, A, C)、(B, C, A)、(C, A, B)和(C, B, A)视为相同的情况。
有N个人参加一场这样的游戏的比赛,赛程规定任意两个人之间都要进行一场比赛:这样总共有场比赛。比赛已经进行了一部分,我们想知道在极端情况下,比赛结束后最多会发生多少剪刀石头布情况。即给出已经发生的比赛结果,而你可以任意安排剩下的比赛的结果,以得到尽量多的剪刀石头布情况。
Input
输入文件的第1行是一个整数
N
N
,表示参加比赛的人数。
之后是一个行
N
N
列的数字矩阵:一共行,每行
N
N
列,数字间用空格隔开。在第行的第
j
j
列的数字如果是1,则表示在已经发生的比赛中赢了
j
j
;该数字若是0,则表示在已经发生的比赛中败于
j
j
;该数字是2,表示和
j
j
之间的比赛尚未发生。数字矩阵对角线上的数字,即第行第
i
i
列的数字都是0,它们仅仅是占位符号,没有任何意义。
输入文件保证合法,不会发生矛盾,当时,第
(i+1)
(
i
+
1
)
行第
j
j
列和第行第i列的两个数字要么都是2,要么一个是0一个是1。
Output
输出文件的第1行是一个整数,表示在你安排的比赛结果中,出现了多少剪刀石头布情况。
输出文件的第2行开始有一个和输入文件中格式相同的N行N列的数字矩阵。第
(i+1)
(
i
+
1
)
行第
j
j
个数字描述了和
j
j
之间的比赛结果,1表示赢了
j
j
,0表示负于
j
j
,与输入矩阵不同的是,在这个矩阵中没有表示比赛尚未进行的数字2;对角线上的数字都是0。输出矩阵要保证合法,不能发生矛盾。
Sample Input
3
0 1 2
0 0 2
2 2 0
Sample Output
1
0 1 0
0 0 1
1 0 0
HINT
100%的数据中,。
解:
这道题好强啊。orz!!!!!!!
感觉要完了,看了一大堆还是不会。
这道题需要发现一个性质,怎么判断一个三元环?因为这是一个竞赛图,所以对于一组三个点。当他们的入度都为1的时候就会出现一个环。但是我们是不好判断这个环的,难道你要让我枚举所有点?再向下想一想,要是一个不成环的三个点会怎么样?显然出现一个入度为2的点,1个出度为2的点,和一个出度入度为1的点。是不是很妙?
只要有一个入度为2的点,我们不成环的三元组就多一个
那我们岂不是可以算不成环的三个点再用总数减一减?
具体来说是这样的:
我们要使答案最大那就是后面那一块最小。我们要做的就是给图定向,是不是想到了费用流?
没错,就是这样。我们把每条边看做一个点,没有定向的就连两个点,定了向的就连一个点。至于每个点的贡献不是随度数线性增长的,我们把它拆成很多流量为1的边就是。
输出方案的话,看哪条边被割就知道这条边的方向了。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 1000000000
using namespace std;
struct lxy{
int flow,to,next,w;
}eg[1000005];
int n,p,m,s,f,ss,tt,cnt=-1;
int head[20005],data[105][105],dis[40005];
bool vis[20005];
long long ans;
void add(int op,int ed,int flow,int cost){
eg[++cnt].next=head[op];
eg[cnt].to=ed;
eg[cnt].flow=flow;
eg[cnt].w=cost;
head[op]=cnt;
}
bool spfa(){
queue <int> d;
memset(dis,0x3f3f3f3f,sizeof(dis));
memset(vis,0,sizeof(vis));
d.push(ss),dis[ss]=0;
while(!d.empty()){
int now=d.front();d.pop();vis[now]=0;
for(int i=head[now];i!=-1;i=eg[i].next)
if(eg[i].flow!=0&&dis[eg[i].to]>dis[now]+eg[i].w){
dis[eg[i].to]=dis[now]+eg[i].w;
if(vis[eg[i].to]==0){
vis[eg[i].to]=1;
d.push(eg[i].to);
}
}
}
if(dis[tt]==0x3f3f3f3f) return false;
else return true;
}
int dfs(int u,int a){
if(u==tt||a==0) return a;
vis[u]=1;
int f,flow=0;
for(int i=head[u];i!=-1;i=eg[i].next)
if(eg[i].flow!=0&&dis[u]+eg[i].w==dis[eg[i].to]&&vis[eg[i].to]==0){
f=dfs(eg[i].to,min(a,eg[i].flow));
flow+=f;a-=f;
eg[i].flow-=f;eg[i^1].flow+=f;
ans+=1ll*f*eg[i].w;
if(a==0) break;
}
return flow;
}
int dinic(){
int ret=0;
while(spfa()){
ret+=dfs(ss,inf);
}
return ret;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&data[i][j]);
int ii=min(i,j),jj=max(i,j);
if(data[i][j]!=0)
add(ii*n+jj,j,1,0),add(j,ii*n+jj,0,0);
}
ss=0,tt=n*n+n+1;
for(int i=n+1;i<=n*n+n;i++)
add(ss,i,1,0),add(i,ss,0,0);
for(int i=1;i<=n;i++)
for(int j=0;j<n;j++)
add(i,tt,1,j),add(tt,i,0,-j);
dinic();
printf("%lld\n",n*(n-1)*(n-2)/(1*2*3)-ans);
memset(data,0,sizeof(data));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=head[i*n+j];k!=-1;k=eg[k].next)
if(eg[k].flow==0){
if(eg[k].to==i) data[j][eg[k].to]++;
if(eg[k].to==j) data[i][eg[k].to]++;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%d ",data[i][j]);
printf("\n");
}
}