中国电信内部员工爆料,真实的工作状态!

94460832fe295ac7d0a70e34521b82b8.png

一名电信内部员工发帖子,爆料了中国电信内部的真实状态。比如996的工作状态,单休,工资低,节假日加班没有三倍工资,以及食堂的价格比其他单位的食堂价格贵。

即便是相同的公司,不同的部门的待遇也是不一样的,不能一概而论。别人说的也仅限于他自己的感受,具体怎么样,还需要自己去体验了才知道。比如我上一篇文章提到的,如果是大龄员工上岸,可能还会受到年龄歧视。

就像队长公司的食堂,很多同事都说不好吃,但是我觉得还不错,毕竟比我自己做的好吃多了,也比点外卖好吃多了。所以,有人说好,有人说不好,就像小马过河,自己真实体验了才知道。

996工作状态基本上是各大公司的标配了。现在大环境不好,公司为了提高效益,只能拼命压榨员工。工资没变,但是工作时间却大幅变长,实际的产出却没有变得更多。毕竟虽然工作时间加长了,但是工作效率却下降了,最终的结果,可能还不如不加班来的好。

但是很多公司可能还没意识到这一点,就觉得既然我付了你的工资,你的时间都是我的,恨不得一天24小时都在工作,资本家就是这样的,一切都是为了利益。

还有就是单休的情况也更加普遍了,上面的电信员工还好,可以选择单休的时间,有的公司则固定到周六或者周末,还美其名曰 “提高协同效率”,非常不人性化,周末说不定哪天有事,不能自由选择自己的时间,就非常难受了。

节假日加班没有三倍工资,这在普通公司还说的过去,但是在电信这种国企有点让人感到意外。毕竟电信可是国企啊,不知道全国都是这样还是部分地区才是这样。只能说,现在的国企跟过去相比,缩水不少。

e97c135673a434520821b836d35b00a8.png

8832798028c55386bcbcae874b236133.png

有联通员工评论说,来联通吧,虽然工资不涨,但好在不加班,双休,办公环境好,工作强度不大。这个条件你会去联通吗?

如果是对于求安稳的人来说,这还是不错的选择,毕竟工作轻松,压力小,生活体验会大大提高。但是对于有些经济紧张的人来说就不太适合了,比如有房贷,每个月月供很多的那种。

63fe0c5725ae486de80f9cff6385edf7.png

既然电信条件那么差,为何还是很少人离职呢?

首先是沉没成本,因为当时既然选择了电信,肯定是被其中的某些点吸引而进去的,之前肯定是衡量过的,所以内心有个大概的印象,不至于一进去就不适应。

很多人进入电信类似的国企,追求的并不是高薪,很多都是为了躺平,过上正常人的生活。如果离开了电信,不仅面临失业难找工作的状态,而且因为适应了国企的慢节奏生活,与社会脱节,不太适应外面快节奏的互联网公司了。

再一个,大家都知道,虽然国企薪资低,但是薪资待遇福利是真好,待得越久,福利待遇就越高,正因为如此,越是老员工就越不会离职。

最后,说了这么多,但是电信体系实在是太大了,各个地区,各个部门可能都不太一样。队长的建议就是:

第一,能去大城市就去大城市,大城市的待遇条件,普遍会比小城市好很多。

第二,能去总部就去总部。总部代表着一家企业的形象,当然各方面也都是最好的。

第三,选择一个好的部门。可以事先去网上搜索相关的部门,或者在一些论坛,社交媒体上找内部员工了解情况。

不管如何,每个人的看法都只能作为参考,具体还是要自己真实体验了才知道。

今天就到这!

关注前端队长,与你一同成长!

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值